[1]曹鸿猷,陈云峰,李 俊,等.预制小箱梁UHPC-NC组合负弯矩区抗弯承载能力[J].长安大学学报(自然科学版),2024,44(6):59-71.[doi:10.19721/j.cnki.1671-8879.2024.06.006]
 CAO Hong-you,CHEN Yun-feng,LI Jun,et al.Bending-bearing capacity of UHPC-NC composite negative bending moment region of small box girder[J].Journal of Chang’an University (Natural Science Edition),2024,44(6):59-71.[doi:10.19721/j.cnki.1671-8879.2024.06.006]
点击复制

预制小箱梁UHPC-NC组合负弯矩区抗弯承载能力()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第44卷
期数:
2024年6期
页码:
59-71
栏目:
桥梁与隧道工程
出版日期:
2024-12-30

文章信息/Info

Title:
Bending-bearing capacity of UHPC-NC composite negative bending moment region of small box girder
文章编号:
1671-8879(2024)06-0059-13
作者:
曹鸿猷1陈云峰1李 俊2杨东洋3李 涛1
(1. 武汉理工大学 土木工程与建筑学院,湖北 武汉 430070; 2. 中铁第四勘察设计院集团有限公司,湖北 武汉 430063; 3. 中铁大桥局集团有限公司设计分公司,湖北 武汉 430050)
Author(s):
CAO Hong-you1 CHEN Yun-feng1 LI Jun2 YANG Dong-yang3 LI Tao1
(1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430079, Hubei, China; 2. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China; 3. Design Company, China Railway Major Bridge Engineering Group Co., Ltd., Wuhan 430050, Hubei, China)
关键词:
桥梁工程 先简支后连续体系 小箱梁 负弯矩区 有限元 参数分析
Keywords:
bridge engineering simply supported and then continuous structure small box girder negative bending moment finite element analysis parameter analysis
分类号:
U448.213
DOI:
10.19721/j.cnki.1671-8879.2024.06.006
文献标志码:
A
摘要:
先简支后连续小箱梁负弯矩区钢束施工工序繁多、效率低,施工不当导致桥面开裂等问题,无负弯矩钢束的超高性能混凝土-普通混凝土(UHPC-NC)组合负弯矩区构造能较好地解决此类问题。以3×30 m跨径小箱梁为例,建立基于混凝土塑性损伤本构(CDP)的UHPC-NC组合负弯矩区精细化有限元模型,并进行缩尺比为1:2的模型试验。选取影响UHPC-NC组合负弯矩区受力性能的3个关键参数:UHPC厚度、UHPC层钢筋直径和UHPC抗拉强度,研究了各参数组合下负弯矩区的开裂荷载和抗弯承载力的变化规律。试验结果表明:试件的开裂弯矩为3 620 kN?m,抗弯承载力为9 611 kN?m,而背景桥例正常使用极限状态下最不利截面负弯矩为3 300 kN?m,承载能力极限状态下最不利截面负弯矩为5 838 kN?m,UHPC-NC组合负弯矩区构造的抗裂性能和承载能力均满足工程要求,且试验结果与实体有限元模型计算结果吻合良好。UHPC厚度每增加25 mm,梁体开裂荷载提高约10%,抗弯承载力提高约9%,UHPC厚度的改变对UHPC-NC组合梁体的开裂弯矩与抗弯承载力均有较为明显的影响; UHPC层钢筋直径每增大2 mm,梁体承载力提高约6%,而开裂荷载仅提升约1.8%,不同直径的UHPC层钢筋主要影响梁体开裂后的残余刚度以及抗弯承载力,对开裂荷载影响较小; 而UHPC抗拉强度每增大2 MPa,梁体承载力提高约10%,但对开裂荷载影响有限,增大UHPC抗拉强度会导致试件破坏时UHPC层的残余应力增加,提高其对UHPC-NC组合梁体抗弯承载力的贡献,从而提高梁体承载力。对于30 m跨径小箱梁桥,UHPC长度建议中支点两侧各取2 m,UHPC厚度为200 mm,UHPC层钢筋直径取10 mm。
Abstract:
The construction process of negative bending moment tendons of simply supported and then continuous small box girder beam bridge was complex and inefficient, and improper construction can lead to issues such as cracking of the bridge deck.However, the ultra-high performance concrete-normal concrete(UHPC-NC)composite negative bending moment region can effectively address these problems. A 3×30 m span small box girder beam bridge was taken as an example, a refined finite element model of the UHPC-NC composite negative bending moment region was established based on the concrete damage plasticity(CDP)constitutive model, and a 1:2 scaled model test was conducted. Three key parameters influencing the stress performance of the UHPC-NC compositenegative bending moment region were identified, UHPC thickness, UHPC layer steel bar diameter, and UHPC tensile strength. The variation in the cracking load and bending-bearing capacity of the negative bending moment region under different combinations of these parameters was studied. The results show that the cracking moment of the test specimen is3 620 kN?m, the bending-bearing capacity is 9 611 kN?m, while the design value of negative moment for the background bridge example under normal serviceability limit state is 3 300 kN?m, and the design value of negative moment for the ultimate limit state is 5 838 kN?m.The crack resistance and bending-bearing capacity of the UHPC-NC composite negative bending moment region are both in accordance with the engineering requirements, and the experimental results are well consistent with the calculation results of the solid finite element model.For every 25 mm increase in UHPC thickness, the cracking load of the beam increases by approximately 10% and the bending-bearing capacity increases by approximately 9%. The change in UHPC thickness has a significant impact on both the cracking moment and bending-bearing capacity of the UHPC-NC composite beam. For every 2 mm increase in UHPC layer steel bar diameter, the bending-bearing capacity of the beam increases by approximately 6%, while the cracking load only increases by about 1.8%. The different diameters of UHPC layer steel bars primarily affect the residual stiffness and bending-bearing capacity of the beam after cracking, with a minor effect on the cracking load. On the other hand,for every 2 MPa increase in UHPC tensile strength, the bending-bearing capacity of the beam increases by approximately 10%, but the impact on the cracking load is limited. Increasing the UHPC tensile strength leads to an increase in the residual stress of the UHPC layer upon failure, contributing to the bending-bearing capacity of the UHPC-NC composite beam and thus enhancing the bending-bearing capacity of the beam. For a 30 m span small box girder beam bridge, it is recommended that a UHPC length of 2 m be provided on each side of the mid-support, with a UHPC thickness of 200 mm and a UHPC layer steel bar diameter of 10 mm.5 tabs, 24 figs, 29 refs.

参考文献/References:

[1] 田 飞,夏 昊,王 敏,等.中小跨径全装配式梁桥一体化架设方法及装备[J].中外公路,2022,42(5):83-87.
TIAN Fei,XIA Hao,WANG Min,et al.Integrated erection methodand equipment of full prefabrication medium and small spanbridges[J].Journal of China and Foreign Highways,2022,42(5):83-87.
[2]HUANG J J,SU Q,ZHANG L C,et al.Rapid treatment techniqueof diseases of the rocking axle bearing of railway simplysupported beam bridge[J].Applied Mechanics andMaterials,2013,351-352:1440-1444.
[3]向木生,贺 媚.简支转连续结构临时支座横向拆除顺序研究[J].交通科技,2017(6):61-64.
XIANG Mu-sheng,HE Mei.Study on the horizontal removalorder of temporary bearing in simply supported-continuousstructure[J].Transportation Science and Technology,2017(6):61-64.
[4]MILLER R A,CASTRODALE R,MIRMIRAN A,et al.Connection ofsimple-span precast concrete girders forcontinuity[J].NCHRP Report,2004(519):203.
[5]GASTAL F,ZIA P.Analysis of bridge beams with jointlessdecks[J].Durability of Structures,1989(57):555-560.
[6]庄一舟,徐 亮,程俊峰,等.简支梁桥桥面连续结构力学特性理论分析[J].中国公路学报,2017,30(7):73-85.
ZHUANG Yi-zhou,XU Liang,CHENG Jun-feng,et al.Theoreticalanalysis of mechanical properties for continuous deckstructure of simply supported beam bridge[J].China Journalof Highway and Transport,2017,30(7):73-85.
[7]张子轩.超宽桥梁UHPC-NC组合桥面板力学性能分析[D].武汉:华中科技大学,2020.
ZHANG Zi-xuan.A thesis submitted in partial fulfillment of therequirements for the degree of master of engineering[D].Wuhan:Huazhong University of Science and Technology,2020.
[8]盛兴旺,周相华.先简支后连续梁桥结构的疲劳性能与抗裂性能[J].中南大学学报(自然科学版),2005,31(3):511-516.
SHENG Xing-wang,ZHOU Xiang-hua.Fatigue behaviour andanticrack property of simply supported-to-continuous beam[J].Journal of Central South University(Natural Science),2005,31(3):511-516.
[9]周建庭,谭书林,谭 华,等.预应力混凝土T梁简支变连续负弯矩区段改进构造试验研究[J].中外公路,2018,38(4):89-95.
ZHOU Jian-ting,TAN Shu-lin,TAN Hua,et al.Research onstructural improvement test in negative moment section withthe change from simple supporting to continuous of theprestressed concrete T-beam[J].Journal of China and ForeignHighways,2018,38(4):89-95.
[10]陈 强.先简支后连续结构体系后连续端部施工顺序研究[J].铁道标准设计,2004(8):65-68.
CHEN Qiang.Study on construction sequence of continuousend of simply supported to continuous structural system[J].Railway Standard Design,2004(8):65-68.
[11]GRAYBEAL B,BRUHWILER E,KIM B S,et al.Internationalperspective on UHPC in bridge engineering[J].Journal ofBridge Engineering,2020,25(11):04020094.
[12]邵旭东,樊 伟,黄政宇.超高性能混凝土在结构中的应用[J].土木工程学报,2021,54(1):1-13.
SHAO Xu-dong,FAN Wei,HUANG Zheng-yu.Application ofultra-high-performance concrete in engineering structures[J].China Civil Engineering Journal,2021,54(1):1-13.
[13]DU J,MENG W,KHAYAT K H,et al.New development ofultra-high-performance concrete(UHPC)[J].Composites Part B:Engineering,2021,224:109220.
[14]吴新印,胡方健,刘兆丰.预制装配式超高性能混凝土(UHPC)桥梁盖梁施工工艺研究[J].中外公路,2022,42(2):138-141.
WU xin-yin,HU Fang-jian,LIU Zhao-feng.Construction technology research on prefabricated bridge bent cap made with ultra high performance concrete(UHPC)[J].Journal of China & Foreign Highway,2022,42(2):138-141.
[15]HUNG C C,EL-TAWIL S,CHAO S H.A review of developmentsand challenges for UHPC in structural engineering:Behavior,analysis,and design[J].Journal of StructuralEngineering,2021,147(9):03121001.
[16]袁 晟,颜东煌,袁 明,等.养护方式和早龄期对钢纤维-UHPC基体界面黏结性能的影响[J].长安大学学报(自然科学版),2022,42(6):133-142.
YUAN Sheng,YAN Dong-huang,YUAN Ming,et al.Effect of curing method and early age on interfacialbond properties of steel fiber-UHPC matrix[J].Journal of Chang'an University(Natural Science Edition),2022,42(6):133-142.
[17]LI W,JI W,AN M,et al.Flexural performance of compositeprestressed UHPC-NCT-girders[J].Journal of BridgeEngineering,2020,25(9):04020064.
[18]YAN B,QIU M,ZENG T,et al.Full-scale experimentalverification of UHPC-RC composite slab culvert with a clearspan of 8 m[J].Journal of BridgeEngineering,2020,25(12):05020010.
[19]JIANG H,DONG X,FANG Z,et al.Experimental study on shearbehavior of a UHPC connection between adjacent precastprestressed concrete voided beams[J].Journal of BridgeEngineering,2020,25(12):04020106.
[20]陈宝春,黄卿维,苏家战,等.中国第一座超高性能混凝土(UHPC)公路箱梁桥的设计与施工[J].中外公路,2021,41(5):74-77.
CHEN Bao-chun,HUANG Qing-wei,SU Jia-zhan.Design and construction of the first UHPC highway box-girder bridge in China[J].Journal of China & Foreign Highway,2021,41(5):74-77.
[21]刘 超,吉 赫.超高性能混凝土-混凝土组合梁抗剪承载力计算方法[J].同济大学学报(自然科学版),2019,47(8):1123-1130.
LIU Chao,JI He.Shear resistance of ultra-high performanceconcrete-concrete composite beam[J].Journal of TongjiUniversity(Natural Science),2019,47(8):1123-1130.
[22]邵旭东,孔小璇,邱明红,等.先简支后连续混凝土梁负弯矩区UHPC“T形”湿接缝试验研究[J].湖南大学学报(自然科学版),2021,48(3):1-13.
SHAO Xu-dong,KONG Xiao-xuan,QIU Ming-hong,et al.Experimental study on UHPC “T-shaped” wet joints in thenegative moment zone of continuous concrete beams aftersimple support[J].Journal of Hunan University(NaturalSciences),2021,48(3):1-13.
[23]刘新华,周 聪,张建仁,等.钢-UHPC组合梁负弯矩区受力性能试验[J].中国公路学报,2020,33(5):110-121.
LIU Xin-hua,ZHOU Cong,ZHANG Jian-ren,et al.Experiment onnegative bending behavior of steel-UHPC compositebeams[J].China Journal of Highway and Transport,2020,33(5):110-121.
[24]李 俊.简支变结构连续小箱梁桥负弯矩区UHPC-NC组合桥面板抗裂性研究[J].铁道标准设计,2023(27):1-9.
LI Jun.Study on a new UHPC-NC composite bridge deck innegative moment region of a continuous bridge convertingfrom simple-support bridge with small box-girder section[J].Railway Standard Design,2023(27):1-9.
[25]李清富,匡一航,郭 威.CDP模型参数计算及取值方法验证[J].郑州大学学报(工学版),2021,42(2):43-48.
LI Qing-fu,KUANG Yi-hang,GUO Wei.CDP modelparameters calculation and value method verification[J].Journal of Zhengzhou University(EngineeringScience),2021,42(2):43-48.
[26]张 哲,邵旭东,李文光,等.超高性能混凝土轴拉性能试验[J].中国公路学报,2015,28(8):50-58.
ZHANG Zhe,SHAO Xu-dong,LI Wen-guang,et al.Axial tensilebehavior test of ultra high performance concrete[J].ChinaJournal of Highway and Transport,2015,28(8):50-58.
[27]AFNOR NF P18-710.National supplement toEurocode 2-Design of concrete structures:Specific rules forultra-high performance fiber-reinforced concretes(UHPFRC)[S].
[28]李学斌,董 亮,曾 兵,等.预制混凝土节段胶拼梁抗拉强度试验研究[J].中国铁道科学,2023,44(4):111-120.
LI Xue-bin,DONG Liang,ZENG Bing,et al.Experimental studyon tensile strength of precast concrete segmental adhesivespliced beams[J].China Railway Science,2023,44(4):111-120.
[29]邵旭东,虢玉标,邱明红.新型UHPC箱梁桥面体系横向受力性能[J].中国公路学报,2018,31(12):144-153.
SHAO Xu-dong,GUO Yu-biao,QIU Ming-hong.Lateral loadperformance of new UHPC box girder bridge deck system[J].China Journal of Highway and Transport,2018,31(12):144-153.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):44.

备注/Memo

备注/Memo:
收稿日期:2024-05-12
基金项目:国家自然科学基金项目(51908437)
作者简介:曹鸿猷(1986-),男,湖北黄冈人,教授,工学博士,E-mail:caohongyou@whut.edu.cn。
更新日期/Last Update: 2024-12-30