[1]朱劲松,王多吴,杨瑞鹏.基于点云数据的钢箱节段数字化预拼装方法[J].长安大学学报(自然科学版),2024,44(6):47-58.[doi:10.19721/j.cnki.1671-8879.2024.06.005]
 ZHU Jin-song,WANG Duo-wu,YANG Rui-peng.Digital pre-assembly method for steel box segments based on point cloud data[J].Journal of Chang’an University (Natural Science Edition),2024,44(6):47-58.[doi:10.19721/j.cnki.1671-8879.2024.06.005]
点击复制

基于点云数据的钢箱节段数字化预拼装方法()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第44卷
期数:
2024年6期
页码:
47-58
栏目:
桥梁与隧道工程
出版日期:
2024-12-30

文章信息/Info

Title:
Digital pre-assembly method for steel box segments based on point cloud data
文章编号:
1671-8879(2024)06-0047-12
作者:
朱劲松123王多吴2杨瑞鹏2
(1. 天津大学 水利工程智能建设与运维全国重点实验室,天津 300350; 2. 天津大学 建筑工程学院,天津 300350; 3. 天津大学 滨海土木工程结构与安全教育部重点实验室,天津 300350)
Author(s):
ZHU Jin-song123 WANG Duo-wu2 YANG Rui-peng2
(1. State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University,Tianjin 300350, China; 2. School of Civil Engineering, Tianjin University, Tianjin 300350, China; 3. Key Laboratory of Coast Civil Structure Safety of Ministry of Education,Tianjin University, Tianjin 300350, China)
关键词:
桥梁工程 智能建造 数字化预拼装 激光点云 质量检查
Keywords:
bridge engineering intelligent construction digital pre-assembly laser point cloud quality inspection
分类号:
U445.4
DOI:
10.19721/j.cnki.1671-8879.2024.06.005
文献标志码:
A
摘要:
为快速完成预制桥梁钢箱节段制造误差检查和预拼装,提出一种基于三维激光扫描点云模型的钢箱节段数字化预拼装方法。首先,基于三维激光扫描技术,对钢箱节段建立三维足尺点云模型并进行点云数据预处理获取完整无噪节段点云; 然后,开发点云边界快速提取算法与针对边界点云的平面投影算法,实现三维足尺点云模型边界点云自动提取和预拼装截面点云数据降维。接着,开发点云边界特征角点自动提取算法,并提出基于特征角点的钢箱节段预拼装截面配准拼接方法和截面预拼装效果评价指标,评估截面预拼装效果。最后,采用某系杆拱桥拱肋钢箱模拟点云进行方法对比和精度验证; 采用实验室钢箱节段现场扫描实测点云模型进行方法验证。研究结果表明:在模拟试验条件下,提出的方法与传统虚拟预拼装方法对比可实现识别钢箱结构最大0.02 mm制造尺寸误差的高效高精度模拟截面虚拟预拼装; 在现场试验条件下,构件最小尺寸为8 mm、扫描距离为10 m时,提出的算法可将预拼装精度控制到1 cm。该方法可为桥梁预制节段数字化预拼装提供参考与算法支撑。
Abstract:
In order to complete manufacturing error inspection and pre-assembly swiftly for prefabricated bridge steel box segments, a novel digital pre-assembly method utilizing 3D laser scanning point cloud models was introduced. At first, 3D laser scanning measurement technology was used to create the steel box segments' foot-scale point cloud models, which were then improved using pre-processing techniques to reduce noise and maintain integrity. Subsequently, a rapid boundary extraction algorithm and a planar point cloud projection algorithm was developed, enabling automatic boundary delineation of the 3D foot-scale point cloud models and facilitating dimension reduction of preassembled cross-sectional data. Additionally, an automatic feature corner point extraction algorithm for boundary point clouds was presented, as well as a method for aligning preassembled cross-sections of steel box segments using these feature points. This approach also included new evaluation indices to assess the pre-assembly's efficacy. Finally, the digital pre-assembly method's feasibility and accuracy were demonstrated, through method comparison and accuracy verification, using simulated point clouds from steel box segments of arch ribs in a specific tied arch bridge, and on-site scanning experiments validated the method's practicality. The results show that this method achieves efficient and high-precision virtual pre-assembly of steel box segments with a maximum manufacturing dimension error of 0.02 mm, outperforming traditional methods under simulated conditions. Pre-assembly accuracy from on-site scanning point cloud data can reach up to 1 cm, with a scanning distance of 10 m and a minimum component size of 8 mm. This method provides a substantial reference and algorithmic support for the digital pre-assembly of prefabricated bridge segments.7 tabs, 12 figs, 22 refs.

参考文献/References:

[1] 齐宏拓,刘界鹏,程国忠,等.基于点云数据的大型复杂钢结构智能化施工方法[J].土木工程学报,2024,57(1):65-75.
QI Hong-tuo,LIU Jie-peng,CHENG Guo-zhong,et al.Intelligent construction of large and complex steel structure based on point cloud data[J].China Civil Engineering Journal,2024,57(1):65-75.
[2]梁 栋,赵 恺,马印怀,等.基于3D激光扫描的钢桥塔节段虚拟装配方法[J].桥梁建设,2021,51(3):62-71.
LIANG Dong,ZHAO Kai,MA Yin-huai,et al.Virtual steel pylon segments assembly method based on 3D laser scanning[J].Bridge Construction,2021,51(3):62-71.
[3]KIM D,KWAK Y,SOHN H.Accelerated cable-stayed bridge construction using terrestrial laser scanning[J].Automation in Construction,2020,117:103269.
[4]闵 岚,汪 泱,冯 骏.钢结构计算机模拟预拼装技术的应用[J].工业建筑,2013,43(增1):722-723,713.
MIN Lan,WANG Yang,FENG Jun.Application of computer simulation pre-assembly technology of steel structure[J].Industrial Construction,2013,43(S1):722-723,713.
[5] 刘晓光,潘永杰.虚拟预拼装技术在钢桁梁中的应用研究[J].铁道建筑,2020,60(1):1-6.
LIU Xiao-guang,PAN Yong-jie.Application of virtual pre-assembly technology for steel truss girder[J].Railway Engineering,2020,60(1):1-6.
[6]吴文清,刘泓佚,王新雅,等.基于点云疏密度分类的混凝土梁逆向建模方法[J].长安大学学报(自然科学版),2022,42(6):23-32.
WU Wen-qing,LIU Hong-yi,WANG Xin-ya,et al.Reverse modeling method for concrete beam based on classifications of density of point cloud[J].Journal of Chang'an University(Natural Science Edition),2022,42(6):23-32.
[7]HAO Z.Virtual assembly technology on steel bridge members of bolt connection[C]//GCMCE.Proceedings of the 2017 Global Conference on Mechanics and Civil Engineering.Paris:Atlantis Press,2017:270-274.
[8]周绪红,刘界鹏,程国忠,等.基于点云数据的大型复杂钢拱桥智能虚拟预拼装方法[J].中国公路学报,2021,34(11):1-9.
ZHOU Xu-hong,LIU Jie-peng,CHENG Guo-zhong,et al.Intelligent virtual trial assembly of large and complex steel arch bridges based on point cloud data[J].China Journal of Highway and Transport,2021,34(11):1-9.
[9]毛伟琦,李小珍,王熊珏.基于特征点的钢桁梁桥桁段虚拟拼装方法研究[J].桥梁建设,2023,53(6):26-33.
MAO Wei-qi,LI Xiao-zhen,WANG Xiong-jue.Research on feature-based virtual assembly algorithm for truss segments of steel truss bridge[J].Bridge Construction,2023,53(6):26-33.
[10]朱爱珠,王佳盟,潘文铭,等.基于PCL的钢箱节段虚拟预拼装技术[J].重庆交通大学学报(自然科学版),2024,43(1):10-17.
ZHU Ai-zhu,WANG Jia-meng,PAN Wen-ming,et al.Virtual preassembly technology of steel box segment based on PCL[J].Journal of Chongqing Jiaotong University(Natural Science),2024,43(1):10-17.
[11]左 勇,任 阳,杜志华,等.基于LP-RANSAC算法的路面点云快速移除算法[J].激光与光电子学进展,2023,60(14):384-389.
ZUO Yong,REN Yang,DU Zhi-hua,et al.Rapid removal algorithm of road surface point cloud based on LP-RANSAC algorithm[J].Laser & Optoelectronics Progress,2023,60(14):384-389.
[12]袁亚通.基于地面激光扫描的劲性骨架拱桥线形控制方法研究[D].重庆:重庆交通大学,2021.
YUAN Ya-tong.Research on linear control method of rigid skeleton arch bridge based on ground laser scanning[D].Chongqing:Chongqing Jiaotong University,2021.
[13]MELLADO N,AIGER D,MITRA N J.Super 4PCS fast global point cloud registration via smart indexing[J].Computer Graphics Forum,2014,33(5):205-215.
[14]LI D,LIU J,FENG L,et al.Automatic modeling of prefabricated components with laser-scanned data for virtual trial assembly[J].Computer-Aided Civil and Infrastructure Engineering,2021,36(4):453-471.
[15]赵梦娜,花向红,冯绍权,等.基于点云切片的建筑物门窗信息提取[J].中国激光,2020,47(6):183-192.
ZHAO Meng-na,HUA Xiang-hong,FENG Shao-quan,et al.Information extraction of buildings,doors,and windows based on point cloud slices[J].Chinese Journal of Lasers,2020,47(6):183-192.
[16]马振国.利用kdtree索引实现曲率自适应点云简化算法[J].测绘科学,2010,35(6):67-69.
MA Zhen-guo.A point cloud simplification algorithm based on kdtree and curvature sampling[J].Science of Surveying and Mapping,2010,35(6):67-69.
[17]朱宗玖,裴善强,周之琪,等.三维数据降维处理的实现方法[J].光电子·激光,2020,31(1):89-95.
ZHU Zong-jiu,PEI Shan-qiang,ZHOU Zhi-qi,et al.Realization method of dimensionality reduction processing of 3D data[J].Journal of Optoelectronics·Laser,2020,31(1):89-95.
[18]王艺楠.基于特征降维与模糊聚类的自适应点云压缩研究[D].上海:东华大学,2017.
WANG Yi-nan.A simplification method for point cloud based on feature dimensionality reduction and fuzzy cluster[D].Shanghai:Donghua University,2017.
[19]熊风光,霍 旺,韩 燮,等.三维点云中关键点误匹配剔除方法[J].光学学报,2018,38(2):128-138.
XIONG Feng-guang,HUO Wang,HAN Xie,et al.Removal method of mismatching keypoints in 3D point cloud[J].Acta Optica Sinica,2018,38(2):128-138.
[20]赵明富,黄 铮,宋 涛,等.融合采样一致性和迭代最近点算法的点云配准方法[J].激光杂志,2019,40(10):45-50.
ZHAO Ming-fu,HUANG Zheng,SONG Tao,et al.Point cloud registration method based on sample consensus initial alignment and iterative closest point algorithm[J].Laser Journal,2019,40(10):45-50.
[21]王 珊,王春阳.基于特征点匹配的三维点云配准算法[J].国外电子测量技术,2020,39(12):23-28.
WANG Shan,WANG Chun-yang.Three-dimensional point cloud registration algorithm based on feature point matching[J].Foreign Electronic Measurement Technology,2020,39(12):23-28.
[22]SMITH A,SARLO R.Automated extraction of structural beam lines and connections from point clouds of steel buildings[J].Computer-Aided Civil and Infrastructure Engineering,2022,37(1):110-125.

相似文献/References:

[1]李宇,朱晞,杨庆山,等.高墩大跨桥梁结构的脆弱性分析[J].长安大学学报(自然科学版),2012,32(01):0.
[2]高亮,刘健新,张丹,等.桁架桥主梁三分力系数试验[J].长安大学学报(自然科学版),2012,32(01):0.
[3]刘旭政,王丰平,黄平明,等.斜拉桥各构件校验系数的常值范围[J].长安大学学报(自然科学版),2012,32(01):0.
[4]尚维波,张春宁.高墩刚构桥系梁抗震分析[J].长安大学学报(自然科学版),2012,32(01):0.
[5]邬晓光,李冀弘,宋伟伟.基于改进响应面法的在役PC桥梁承载力可靠性[J].长安大学学报(自然科学版),2012,32(03):53.
 WU Xiao-guang,LI Ji-hong,SONG Wei-wei.Reliability of existing PC bridge based on improved response surface method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):53.
[6]石雄伟,袁卓亚,马毓泉,等.钢板-混凝土组合加固预应力混凝土箱梁[J].长安大学学报(自然科学版),2012,32(03):58.
 SHI Xiong-wei,YUAN Zhuo-ya,MA Yu-quan,et al.Prestressed concrete box girder strengthened with comsposition of steel plate and concrete[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):58.
[7]李传习,陶 伟,董创文.斜交墩截面刚度与弯曲正应力[J].长安大学学报(自然科学版),2012,32(03):63.
 LI Chuan-xi,TAO Wei,DONG Chuang-wen.Sectional stiffness and bending normal stress of oblique pier[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):63.
[8]邓继华,邵旭东.带铰平面梁元几何非线性有限元分析[J].长安大学学报(自然科学版),2012,32(03):68.
 DENG Ji-hua,SHAO Xu-dong.Geometric nonlinear finite element analysis of plane beam element with hinge[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):68.
[9]蒲广宁,赵 煜,宋一凡.减梁增肋法加固空心板桥的力学性能[J].长安大学学报(自然科学版),2012,32(06):38.
 PU Guang-ning,ZHAO Yu,SONG Yi-fan.Mechanical properties of strengthening hollow slab bridge based on beam-reduction and rib-addition method[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):38.
[10]党 栋,贺拴海,周勇军,等.基于车辆统计数据的汽车荷载标准值取值与评估[J].长安大学学报(自然科学版),2012,32(06):44.
 DANG Dong,HE Shuan-hai,ZHOU Yong-jun,et al.Choosing and assessment for the standard of vehicle load based on vehicle statistical data[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):44.

备注/Memo

备注/Memo:
收稿日期:2024-06-19
基金项目:国家自然科学基金项目(52378310)
作者简介:朱劲松(1975-),男,安徽池州人,教授,博士研究生导师,E-mail:jszhu@tju.edu.cn。
更新日期/Last Update: 2024-12-30