[1]王清洲,赵洪彬,尚瑞鹏,等.混凝土防腐涂层性能及试验方法综述[J].长安大学学报(自然科学版),2024,44(6):34-46.[doi:10.19721/j.cnki.1671-8879.2024.06.004]
 WANG Qing-zhou,ZHAO Hong-bin,SHANG Rui-peng,et al.Research progress on performance and test methods of concrete anticorrosive coating[J].Journal of Chang’an University (Natural Science Edition),2024,44(6):34-46.[doi:10.19721/j.cnki.1671-8879.2024.06.004]
点击复制

混凝土防腐涂层性能及试验方法综述()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第44卷
期数:
2024年6期
页码:
34-46
栏目:
道路工程
出版日期:
2024-12-30

文章信息/Info

Title:
Research progress on performance and test methods of concrete anticorrosive coating
文章编号:
1671-8879(2024)06-0034-13
作者:
王清洲赵洪彬尚瑞鹏肖成志马士宾
(河北工业大学 土木与交通学院,天津 300401)
Author(s):
WANG Qing-zhou ZHAO Hong-bin SHANG Rui-peng XIAO Cheng-zhi MA Shi-bin
(School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China)
关键词:
道路工程 混凝土 防腐涂层 综述 氯盐腐蚀 耐久性评价
Keywords:
road engineering concrete anti-erosion coating review chloride erosion durability evaluation
分类号:
U414
DOI:
10.19721/j.cnki.1671-8879.2024.06.004
文献标志码:
A
摘要:
为改善混凝土在氯盐腐蚀环境下的耐久性,从涂层防腐机理、分类、耐久性评价以及涂层体系选用和施工技术等方面系统总结混凝土防腐涂层的研究进展,并对涂层材料开发、试验方法统一构建等方面的发展趋势进行展望。研究结果表明:涂层通过表面成膜封缝、孔隙内部封闭、渗透疏水等功能实现裂缝封闭、阻断氯离子水溶液进入混凝土内部,形成了3类功能不同的涂层材料,明确了各类涂层适用的应用场景,应综合考虑涂层所处环境的干湿条件、腐蚀程度、应用部位等因素选用涂层类型; 涂层的耐久性对混凝土防腐性能起关键作用,但交通运输行业相关规范中对3类涂层耐久性的评价指标及技术要求不统一且差异较大,限制了涂层优选和品种更新,考虑特殊的应用场景,推荐增加耐冲刷磨蚀性指标作为耐久性的评价指标以建立更加完善的评价体系; 正确选用涂层体系和优良的施工技术是发挥涂层防腐效果的有效保障,交通行业对表面成膜型涂层给出了推荐的涂层体系,有效促进了涂层技术的发展,但缺少对工程应用中各类涂层施工工艺、应用效果以及长期使用性能的评估和监测,不利于经验借鉴和技术提升; 未来,应建立涂层环保方面的评价指标并开发功能性改性涂层材料; 形成适用于多行业的技术规范以及统一涂层混凝土抗腐蚀性能评价方法和指标,以期为相关领域的发展提供指导和支持。
Abstract:
Aims to enhance the durability of concrete in environments susceptible to chlorideerosion, the research progress of concrete anticorrosive coatings, including the systematicsummarization of coating protection mechanisms, classification, durability evaluation, andselection as well as application techniques of coating systems were systematically summarized.The development trends of coating material development, standardization of testing methods, andother aspects were also anticipated. The results show that coatings achieve cracksealing by forming a film on the surface, sealing internal pores, and imparting hydrophobicproperties to prevent the ingress of chloride ion solutions into concrete. Different types of coatingsare categorized based on their distinct functionalities, specifying suitable application scenarios foreach type. The selection of coating types should consider factors such as humidity, degree oferosion, and site of application. The durability of coatings plays a pivotal role in the anti-corrosiveperformance of concrete. However, existing standards in the transportation industry for evaluatingthe durability of these coatings are inconsistent and vary widely among the three categories, whichlimits optimal selection and variety updates of coatings. Considering special application scenarios,it is recommended that include resistance to abrasion and erosion as additional durability evaluationcriteria to establish a more comprehensive assessment system. The proper selection of coatingsystems and superior application techniques are crucial for effective erosion protection. Thetransportation industry has recommended specific coating systems for surface-filming coatings,which have facilitated the development of coating technology. However, there is a lack ofassessment and monitoring of construction techniques, application effects, and long-termperformance in engineering applications, which limits the transfer of experience and technologicaladvancement. Future directions should focus on establishing environmental assessment criteria forcoatings and developing functionally modified coating materials. Additionally, creating technicalstandards applicable across industries and unified methods for evaluating the erosion resistance ofcoated concrete is essential to guide and support the development in related fields.5 tabs, 2 figs, 67 refs.

参考文献/References:

[1] 2022年交通运输行业发展统计公报[EB/OL].(2023-06-21)[2023-10-24].https://www.gov.cn/lianbo/bumen/202306/content_6887539.htm
Ministry of Transport of the People's Republic of China.Statistical bulletin on the development of the transportation industry in 2022[EB/OL].(2023-06-21)[2023-10-24].https://www.gov.cn/lianbo/bumen/202306/content_6887539.htm
[2]JI X L,CHEN L J,LIANG K,et al.A review on FRP bars and supplementary cementitious materials for the nextgeneration of sustainable and durable construction materials[J].Construction and BuildingMaterials,2023,383:131403.
[3]刘沐宇,梁 磊,吴 浩,等.海洋桥梁工程全寿命管理维护战略探讨[J].中国工程科学,2019,21(3):25-30.
LIU Mu-yu,LIANG Lei,WU Hao,et al.Lifecycle management and maintenance of marine bridge engineering[J].Strategic Study of CAE,2019,21(3):25-30.
[4]丁向群,陈 灿,赵丽佳,等.膨润土对混凝土抗渗透性能影响的研究[J].混凝土,2021(1):102-106.
DING Xiang-qun,CHEN Can,ZHAO Li-jia,et al.Effect of bentonite on the permeability resistance of concrete[J].Concrete,2021(1):102-106.
[5]SALADI N,MONTANARI L,DE LA VARGA I,et al.Assessing durability properties of ultra-high performance concrete-class materials[J].Materials and Structures,2023,56(8):155.
[6]LYNA P,TAWEECHAI S,SOMNUK T.Experimental investigation on the degradation of coating on concrete surfaces exposed to accelerated and natural UV in chloride environment[J].Journal of Adhesion Science and Technology,2023,37(2):240-256.
[7]TAHRI W,HU X,SHI C J,et al.Review on corrosion of steel reinforcement in alkali-activated concretes in chloride-containing environments[J].Construction and Building Materials,2021,293:123484.
[8]张 铖,李维红,范金朋,等.不同防护涂层提升混凝土耐久性能研究[J].混凝土,2019(12):165-168.
ZHANG Cheng,LI Wei-hong,FAN Jin-peng,et al.Study on durability of concrete structures strengthened by different protective coatings[J].Concrete,2019(12):165-168.
[9]ELNAGGAR E M,ELSOKKARY T M,SHOHIDE M A,et al.Surface protection of concrete by new protective coating[J].Construction and Building Materials,2019,220:245-252.
[10]SONG J L,LI Y X,XU W,et al.Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion[J].Journal of Colloid and Interface Science,2019,541:86-92.
[11]孙红尧,张兴铎,李森林,等.防护涂料在钢筋混凝土结构表面的国内应用现状[J].涂料工业,2019,49(5):79-87.
SUN Hong-yao,ZHANG Xing-duo,LI Sen-lin,et al.Status of application of protective coatings on reinforced concrete surface in China[J].Paint & Coatings Industry,2019,49(5):79-87.
[12]张利铨,林上顺,陶志蕾,等.跨海大桥RC桥墩防腐蚀研究进展[J].水利与建筑工程学报,2022,20(1):177-183.
ZHANG Li-quan,LIN Shang-shun,TAO Zhi-lei,et al.Research progress on corrosion protection of RC piers of sea crossing bridges[J].Journal of Water Resources and Architectural Engineering,2022,20(1):177-183.
[13]ZHANG T,ZHANG X F,LI P F,et al.Experimental research on fatigue performance of reinforced concrete T-shaped beams under corrosion-fatigue coupling action[J].Materials,2023,16(3):1257.
[14]ZHANG C Y,ZHANG S F,YU J W,et al.Water absorption behavior of hydrophobized concrete using silane emulsion as admixture[J].Cement and Concrete Research,2022,154:106738.
[15]DI MUNDO R,LABIANCA C,CARBONE G,et al.Recent advances in hydrophobic and icephobic surface treatments of concrete[J].Coatings,2020,10(5):449.
[16]MILLÁN R G P,BYLINSKI H,NIEDOSTATKIEWICZ M.Deterioration and protection of concrete elements embedded in contaminated soil:A review[J].Materials,2021,14(12):3253.
[17]ZHANG Y H,LI Y Z,THAKUR V K,et al.Bio-based reactive diluents as sustainable replacements for styrene in MAESO resin[J].RSC Advances,2018,8(25):13780-13788.
[18]PAN X Y,SHI Z G,SHI C J,et al.A review on concrete surface treatment part Ⅰ:Types and mechanisms[J].Construction and Building Materials,2017,132:578-590.
[19]CHOI S M,LEE S,SHIN E J.Synthesis and characterization of biopolyol-based waterborne polyurethane modified through complexation with chitosan[J].Nanomaterials,2022,12(7):1143.
[20]WANG L X,ZHANG J W,WANG F J,et al.Investigation on the effects of polyaniline/lignin composites on the performance of waterborne polyurethane coating for protecting cement-based materials[J].Journal of Building Engineering,2023,64:105665.
[21]LIU H C,WEI L W,GAO F S,et al.Performance research and formulation optimization of high-performance local insulation spray coating materials[J].Nanomaterials,2022,12(19):3344.
[22]齐玉宏,张国梁,池金锋,等.混凝土防腐涂料的研究进展[J].涂料工业,2018,48(11):63-71,78.
QI Yu-hong,ZHANG Guo-liang,CHI Jin-feng,et al.Progress in anticorrosive coatings for concrete[J].Paint & Coatings Industry,2018,48(11):63-71,78.
[23]JT/T 695—2007,混凝土桥梁结构表面涂层防腐技术条件[S].
JT/T 695—2007,Specification of anti-corrosive coating for concrete bridge structure[S].
[24]DUGAS R,FORERO-SABOYA J D,PONROUCH A.Methods and protocols for reliable electrochemical testing in post-Li batteries(Na,K,Mg,and Ca)[J].Chemistry of Materials,2019,31(21):8613-8628.
[25]GU W C,WANG W,JIAO X,et al.Waterborne superamphiphobic coatings with network structure for enhancing mechanical durability[J].RSC Advances,2022,12(26):16510-16516.
[26]PAN X Y,SHI C J,JIA L F,et al.Effect of inorganic surface treatment on air permeability of cement-based materials[J].Journal of Materials in Civil Engineering,2016,28(3):04015145.
[27]LI J F,SONG J L,ZHANG S H,et al.The effects of various silicate coatings on the durability of concrete:Mechanisms and implications[J].Buildings,2024,14(2):381.
[28]KIM T K,PARK J S.Comparative analysis of domestic and international test guidelines for various concrete repair materials[J].Materials,2022,15(9):3267.
[29]ZHANG Y Z,WANG R W,DING Z.Influence of crystalline admixtures and their synergetic combinations with other constituents on autonomous healing in cracked concrete:A review[J].Materials,2022,15(2):440.
[30]LI P F,GAN W H,YAO G Y,et al.Effect of permeable crystalline materials on the mechanical and porosity property of recycled aggregate and recycled aggregate concrete[J].Materials,2023,16(13):4596.
[31]CHEN F,QUY N X,KIM J,et al.Investigation on aesthetic and water permeability of surface protective material under accelerated weathering[J].Materials,2021,14(22):6896.
[32]JIANG L,ZHENG H B,XIONG J B,et al.Fabrication of negative carbon superhydrophobic self-cleaning concrete coating:High added-value utilization of recycled powders[J].Cement and Concrete Composites,2023,136:104882.
[33]ZHANG W J,LI S C,HOU D S,et al.Study on unsaturated transport of cement-based silane sol coating materials[J].Coatings,2019,9(7):427.
[34]ZHOU C L,PAN M F,LI S J,et al.Metal organic frameworks(MOFs)as multifunctional nanoplatform for anticorrosion surfaces and coatings[J].Advances in Colloid and Interface Science,2022,305:102707.
[35]JTJ 275—2000,海港工程混凝土结构防腐蚀技术规范[S].
JTJ 275—2000,Corrosion prevention technical specifications for concrete structures of marine harbour engineering[S].
[36]GB/T 50082—2009,普通混凝土长期性能和耐久性能试验方法标准[S].
GB/T 50082—2009,Standard for test methods of long-term performance and durability of ordinary concrete[S].
[37]JG/T 335—2011,混凝土结构防护用成膜型涂料[S].
JG/T 335—2011,Film-forming coatings for concrete structure protection[S].
[38]JTS 153—2015,水运工程结构耐久性设计标准[S].
JTS 153—2015,Standard for durability design of port and waterway engineering structure[S].
[39]JTG/T 3310—2019,公路工程混凝土结构耐久性设计规范[S].
JTG/T 3310—2019,Code for durability design of concrete structures in highway engineering[S].
[40]JT/T 991—2015,桥梁混凝土表面防护用硅烷膏体材料[S].
JT/T 991—2015,Creamy silane impregnating agent for concrete surface protection of bridge[S].
[41]宋莉芳,陈彤丹,文一平,等.混凝土用水性氟碳涂料的制备及耐腐蚀性能评价[J].化学研究与应用,2019,31(6):1209-1215.
SONG Li-fang,CHEN Tong-dan,WEN Yi-ping,et al.Preparation and properties of waterborne fluorinated polyacrylate coating for concrete anti-corrosion[J].Chemical Research and Application,2019,31(6):1209-1215.
[42]GB/T 5210—2006,色漆和清漆拉开法附着力试验[S].
GB/T 5210—2006,Paints and varnishes-pull-off test for adhesion[S].
[43]郝贠洪,宣姣羽,李 洁,等.紫外老化作用下钢结构涂层受风沙冲蚀性能研究[J].工程科学与技术,2022,54(4):141-146.
HAO Yun-hong,XUAN Jiao-yu,LI Jie,et al.Study on sand erosion performance of steel structure coatings under UV aging[J].Advanced Engineering Sciences,2022,54(4):141-146.
[44]GB/T 1865—2009,色漆和清漆 人工气候老化和人工辐射曝露 滤过的氙弧辐射[S].
GB/T 1865—2009,Paints and varnishes-Artificial weathering and exposure to artificial radiation-Exposure to filtered xenon-arc radiation[S].
[45]GB/T 1732—2020,漆膜耐冲击测定法[S].
GB/T 1732—2020,Determination of impact resistance of coating films[S].
[46]JC/T 2217—2014,环氧树脂防水涂料[S].
JC/T 2217—2014,Epoxy resin waterproof coating[S].
[47]JC/T 1018—2020,水性渗透型无机防水剂[S].
JC/T 1018—2020,Waterbased capillary inorganic waterproofer[S].
[48]GB 18445—2012,水泥基渗透结晶型防水材料[S].
GB 18445—2012,Cementitious capillary crystalline waterproofing materials[S].
[49]孙红尧,徐雪峰,杜 恒.中国水工结构抗冲磨防空蚀涂料的研究及应用现状[J].水利水运工程学报,2023(5):158-168.
SUN Hong-yao,XU Xue-feng,DU Heng.Investigation and application of abrasion and cavitation resistant coatings for hydraulic structures in China[J].Hydro-Science and Engineering,2023(5):158-168.
[50]GB/T 20624.2—2006,色漆和清漆 快速变形(耐冲击性)试验 第2部分:落锤试验(小面积冲头)[S].
GB/T 20624.2—2006,Paints and varnishes-Rapid-deformation(impact resistance)tests-Part 2:Falling-weight test(small-area indenter)[S].
[51]DL/T 5150—2017,水工混凝土试验规程[S].
DL/T 5150—2017,Test code for hydraulic concrete[S].
[52]DL/T 5207—2021,水工建筑物抗冲磨防空蚀混凝土技术规范[S].
DL/T 5207—2021,Technical specification for abrasion and cavitation erosion resistance of concrete in hydraulic structures[S].
[53]GB/T 1768—2006,色漆和清漆耐磨性的测定:旋转橡胶砂轮法[S].
GB/T 1768—2006,Method of test for abrasion resistance of paint films[S].
[54]GB/T 23988—2009,涂料耐磨性测定:落砂法[S].
GB/T 23988—2009,Determination for abrasion resistance of coatings by falling abrasive[S].
[55]GB/T 1689—2014,硫化橡胶:耐磨性能的测定[S].
GB/T 1689—2014,Rubber vulcanized—Determination of abrasion resistance(Akron machine)[S].
[56]KAUR R,KAUR R,RANI S,et al.Rapid monitoring of organochlorine pesticide residues in various fruit juices and water samples using fabric phase sorptive extraction and gas chromatography-mass spectrometry[J].Molecules,2019,24(6):1013.
[57]MILLÁN R G P,BYLINSKI H,NIEDOSTATKIEWICZ M.Effectiveness of various types of coating materials applied in reinforced concrete exposed to freeze-thaw cycles and chlorides[J].Scientific Reports,2023,13:12977.
[58]常绍艳,晁 兵.硅烷浸渍与湿面涂装工艺技术在嘉绍大桥上的设计应用[J].现代涂料与涂装,2012,15(12):30-32.
CHANG Shao-yan,CHAO Bing.Design application of silane impregnation & wet surface technology on Jiashao Bridge[J].Modern Paint & Finishing,2012,15(12):30-32.
[59]孟凡超,吴伟胜,刘明虎.港珠澳大桥桥梁耐久性设计创新[J].预应力技术,2010,32(6):11-27.
MENG Fan-chao,WU Wei-sheng,LIU Ming-hu.Durability design innovation of Hong Kong-Zhuhai-Macao Bridge[J].Prestress Technology,2010,32(6):11-27.
[60]张 杰.长平高速公路松下跨海特大桥设计[J].福建交通科技,2021(10):59-62.
ZHANG Jie.Design of Panasonic Cross-sea Bridge on Changping Expressway[J].Fujian Jiaotong Keji,2021(10):59-62.
[61]殷鹏程.福厦高铁湄洲湾跨海大桥(96+180+96)m斜拉桥总体设计[J].铁道标准设计,2020,64(增1):12-18.
YIN Peng-cheng.Overall design of(96+180+96)m cable-stayed bridge of Meizhou Bay Cross-sea Bridge of Fuzhou-Xiamen High-speed Railway[J].Railway Standard Design,2020,64(S1):12-18.
[62]王登辉.泉州安海湾特大桥主桥耐久性质量控制措施[J].福建交通科技,2020(1):82-86,99.
WANG Deng-hui.Quality control measures for durability of main bridge of Anhaiwan Bridge in Quanzhou[J].Fujia Jiaotong Keji,2020(1):82-86,99.
[63]文望青,严 翯,曾甲华.福厦高铁泉州湾跨海大桥桥塔设计[J].世界桥梁,2020,48(增1):7-11.
WEN Wang-qing,YAN He,ZENG Jia-hua.Tower design of Quanzhou Bay Cross-sea Bridge on Fuzhou-Xiamen High-speed Railway[J].World Bridges,2020,48(S1):7-11.
[64]杜 磊,梁立农,孙向东,等.黄茅海跨海通道工程高栏港大桥桥塔方案设计[J].广东公路交通,2021,47(3):30-35.
DU Lei,LIANG Li-nong,SUN Xiang-dong,et al.Scheme design of towers of Gaolangang Bridge in Huangmaohai link[J].Guangdong Highway Communications,2021,47(3):30-35.
[65]别业山,肖海珠,舒思利.杭州湾跨海铁路大桥总体设计[J].桥梁建设,2023,53(增2):22-28.
BIE Ye-shan,XIAO Hai-zhu,SHU Si-li.Overall design of Hangzhou Bay Cross-sea Railway Bridge[J].Bridge Construction,2023,53(S2):22-28.
[66]NOVÁK L,FOJTL L,KADLECKOVÁ M,et al.Surface modification of metallic inserts for enhancing adhesion at the metal-polymer interface[J].Polymers,2021,13(22):4015.
[67]GUO Y C,SHEN A Q,SUN X H.Exploring polymer-modified concrete and cementitious coating with high-durability for roadside structures in Xinjiang,China[J].Advances in Materials Science and Engineering,2017,2017:9425361.
[68]MERACHTSAKI D,FYTIANOS G,PAPASTERGIADIS E,et al.Properties and performance of novel Mg(OH)2—Based coatings for corrosion mitigation in concrete sewer pipes[J].Materials,2020,13(22):5291.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(6):1.
[11]邢明亮,王伯禹,李华平,等.腐蚀疲劳作用下混凝土膨胀内应力分析[J].长安大学学报(自然科学版),2013,33(02):22.
 XING Ming-liang,WANG Bo-yu,LI Hua-ping,et al.Analysis of expansion internal stress of concrete under coupling action of corrosion and fatigue[J].Journal of Chang’an University (Natural Science Edition),2013,33(6):22.

备注/Memo

备注/Memo:
收稿日期:2024-06-12
基金项目:国家自然科学基金项目(52078182)
作者简介:王清洲(1979-),男,河北沧州人,副教授,工学博士,E-mail:2006126@hebut.edu.cn。
通讯作者:马士宾(1973-),男,河北保定人,教授,工学博士,E-mail:marotolo@126.com。
更新日期/Last Update: 2024-12-30