[1]张懿璞,金雨哲,柯 吉,等.考虑电动汽车负荷的高速公路服务区离网微电网容量配置[J].长安大学学报(自然科学版),2024,44(5):126-140.[doi:10.19721/j.cnki.1671-8879.2024.05.011]
 ZHANG Yi-pu,JIN Yu-zhe,KE Ji,et al.Capacity configuration of microgrid in off-grid accessible service area considering variable load[J].Journal of Chang’an University (Natural Science Edition),2024,44(5):126-140.[doi:10.19721/j.cnki.1671-8879.2024.05.011]
点击复制

考虑电动汽车负荷的高速公路服务区离网微电网容量配置()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第44卷
期数:
2024年5期
页码:
126-140
栏目:
交通能源融合技术专题
出版日期:
2024-10-10

文章信息/Info

Title:
Capacity configuration of microgrid in off-grid accessible service area considering variable load
文章编号:
1671-8879(2024)05-0126-15
作者:
张懿璞金雨哲柯 吉茹 锋张成朔
(长安大学 能源与电气工程学院,陕西 西安 710018)
Author(s):
ZHANG Yi-pu JIN Yu-zhe KE Ji RU Feng ZHANG Cheng-shuo
(School of Energy and Electrical Engineering, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
交通工程 交通能源融合 电动汽车负荷 蒙特卡洛 高速公路 微电网 容量配置
Keywords:
traffic engineering integration of transportation and energy electric vehicle load Monte Carlo highway microgrid capacity configuration
分类号:
U491.11
DOI:
10.19721/j.cnki.1671-8879.2024.05.011
文献标志码:
A
摘要:
为促进交通能源融合,保障偏远地区高速公路电力的稳定供给,合理配置微电网容量至关重要。考虑路网车流量,建立高速公路电动汽车出行轨迹概率模型; 基于蒙特卡洛方法抽取初始和充电时电池容量,综合考虑气温、车主出行习惯和不同车型能耗水平等因素,预测电动车负荷时空分布; 从离网的高速公路服务区不同等级负荷需求出发,基于当地自然禀赋水平,建立以缺电概率最低为目标的规划模型; 综合考虑新能源出力、场地限制、新能源自洽率和极端天气等约束,定量分析车辆OD(起点-终点)矩阵、电池状态SOC以及包含不同车流量、气温典型日对容量配置的影响。研究结果表明:OD矩阵的平均程度对充电负荷有显著影响,当OD矩阵越平均时,电动汽车的充电负荷越小; 当OD矩阵不均衡时,充电负荷会显著增加; 初始电池状态SOC0对充电负荷有直接影响,SOC0越大,充电负荷相应减少; 反之,则增加; 工作日、双休日和节假日的充电负荷呈递增趋势,其中双休日的充电负荷比工作日高12.5%,节假日则比工作日高20%; 因冬季供暖用能比夏季供冷用能更高而风光资源匮乏,因此冬季需配置更大容量的设备以保证用电稳定; 提出的微电网容量配置方法能够有效优化电力供应,保障离网地区的电力稳定性需求,并且能够优化微电网容量配置,保障离网地区用电的稳定性需求,满足1级、2级负荷用电,3级负荷缺电率不超过0.02%,自洽率超过90%,符合供电标准与绿色化要求,为新能源在交通领域的应用提供参考。
Abstract:
To promote the integration of transportation and energy and ensure the stable power supply for highways in remote areas, the proper configuration of microgrid capacity was deemed crucial. A probability model for highway electric vehicle travel trajectories was established considering traffic flow on the road network. Initial and charging battery capacities were extracted using the Monte Carlo method, and the spatiotemporal distribution of electric vehicle loads was predicted by integrating factors such as temperature, travel habits, and different vehicle energy consumption levels. Based on the load demands of off-grid highway service areas and local natural endowments, a planning model targeting the minimum probability of power shortages was developed. Constraints like new energy output, site limitations, energy self-consistency, and extreme weather were considered to quantitatively analyze the impacts of vehicle OD(origin-destination)matrices, states of charge SOC, and typical days with varying traffic volumes and temperatures on capacity configuration. Theresults show that the average degree of the OD matrix significantly affects the charging load. A more balanced OD matrix results in a lower electric vehicle charging load, while an imbalanced OD matrix significantly increases the load. Additionally, the initial states of charge SOC0 directly impacts the charging load, a higher SOC0 reduces the charging load, while a lower SOC0 increases it. Charging loads exhibit an increasing trend on working days, weekends, and holidays, with weekend loads being 12.5% higher than on working days and holiday loads 20% higher. Due to higher heating energy consumption in winter compared to cooling in summer and scarce wind and solar resources, larger capacity equipment is needed in winter to ensure stable power supply. The microgrid capacity configuration method proposed can effectively optimize power supply and meet the stability requirements of off-grid areas, ensuring that the load for primary and secondary levels is met, with the tertiary load shortage rate not exceeding 0.02% and self-consistency exceeding 90%, thus meeting power supply standards and green requirements and providing a reference for the application of new energy in the transportation sector.8 tabs, 16 figs, 31 refs.

参考文献/References:

[1] SABER A Y,VENAYAGAMOORTHY G K.Plug-in vehicles and renewable energy sources for cost and emission reductions[J].IEEE Transactions on Industrial Electronics,2011,58(4):1229-1238.
[2]WU D,ALIPRANTIS D C,GKRITZA K.Electric energy and power consumption by light-duty plug-in electric vehicles[J].IEEE Transactions on Power Systems,2011,26(2):738-746.
[3]胡俊杰,赖信辉,郭 伟,等.考虑电动汽车灵活性与风电消纳的区域电网多时间尺度调度[J].电力系统自动化,2022,46(16):52-60.
HU Jun-jie,LAI Xin-hui,GUO Wei,et al.Multi-time-scale scheduling for regional power grid considering flexibility of electric vehicle and wind power accommodation[J].Automation of Electric Power Systems,2022,46(16):52-60.
[4]PIELTAIN F L,GOMEZ S R T,COSSENT R,et al.Assessment of the impact of plug-in electric vehicles on distribution networks[J].IEEE Transactions on Power Systems,2011,26(1):206-213.
[5]TAYLOR J,MAITRA A,ALEXANDER M,et al.Evaluation of the impact of plug-in electric vehicle loading on distribution system operations[C]//IEEE.2009 IEEE Power & Energy Society General Meeting.New York:IEEE,2009:1-6.
[6]DOMARCHI C,CHERCHI E.Electric vehicle forecasts:A review of models and methods including diffusion and substitution effects[J].Transport Reviews,2023,43(6):1118-1143.
[7]刘 鹏,刘瑞叶,白雪峰,等.基于扩散理论的电动汽车充电负荷模型[J].电力自动化设备,2012,32(9):30-34.
LIU Peng,LIU Rui-ye,BAI Xue-feng,et al.Charging load model based on diffusion theory for electric vehicles[J].Electric Power Automation Equipment,2012,32(9):30-34.
[8]孙 乾,许 珊,朱姝豫,等.考虑DG时序特性及EV时空特性的配电网规划[J].电力自动化设备,2020,40(10):30-38.
SUN Qian,XU Shan,ZHU Shu-yu,et al.Distribution network planning considering DG timing characteristics and EV spatiotemporal characteristics[J].Electric Power Automation Equipment,2020,40(10):30-38.
[9]龙雪梅,杨 军,吴赋章,等.考虑路网-电网交互和用户心理的电动汽车充电负荷预测[J].电力系统自动化,2020,44(14):86-93.
LONG Xue-mei,YANG Jun,WU Fu-zhang,et al.Prediction of electric vehicle charging load considering interaction between road network and power grid and user's psychology[J].Automation of Electric Power Systems,2020,44(14):86-93.
[10]CALEARO L,MARINELLI M,ZIRAS C.A review of data sources for electric vehicle integration studies[J].Renewable and Sustainable Energy Reviews,2021,151:111518.
[11]AXSEN J,KURANI K S.Anticipating plug-in hybrid vehicle energy impacts in California:Constructing consumer-informed recharge profiles[J].Transportation Research Part D,2010,15(4):212-219.
[12]LIU D H,LI Z,JIANG J Y,et al.Electric vehicle load forecast based on Monte Carlo algorithm[C]//IEEE.2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference(ITAIC).New York:IEEE,2020:1760-1763.
[13]KILIC E,AKIL M,BAYINDIR R,et al.Electric vehicles charging management with Monte Carlo simulation[C]//IEEE.2021 10th International Conference on Renewable Energy Research and Application(ICRERA).New York:IEEE,2021:423-427.
[14]陈丽丹,张 尧,ANTONIO F.电动汽车充放电负荷预测研究综述[J].电力系统自动化,2019,43(10):177-191.
CHEN Li-dan,ZHANG Yao,ANTONIO F.Overview of charging and discharging load forcasting for electric vehicles[J].Automation of Electric Power Systems,2019,43(10):177-191.
[15]邵尹池,穆云飞,余晓丹,等.“车-路-网”模式下电动汽车充电负荷时空预测及其对配电网潮流的影响[J].电机工程学报,2017,37(18):5207-5219.
SHAO Yin-chi,MU Yun-fei,YU Xiao-dan,et al. Spatial-temporal prediction of electric vehicle charging load and its impact on distribution network flow under the model of vehicle-road-grid[J].Transactions of China Electrotechnical Society,2017,37(18):5207-5219.
[16]ZHOU X,ZHANG K,JIA X,et al.Electric vehicle charging load demand forecasting model based on spatial and temporal characteristics[J].Journal of Physics:Conference Series,2023,2465(1):012005.
[17]杨 冰,王丽芳,廖承林.大规模电动汽车充电需求及影响因素[J].电工技术学报,2013,28(2):22-27.
YANG Bing,WANG Li-fang,LIAO Cheng-lin.Large-scale electric vehicle charging demand and influencing factors[J].Transactions of China Electrotechnical Society,2013,28(2):22-27.
[18]张琳娟,许长清,王利利,等.基于OD 矩阵的电动汽车充电负荷时空分布预测[J].电力系统保护与控制,2021,49(20):82-91.
ZHANG Lin-juan,XU Chang-qing,WANG Li-li,et al.OD matrix based spatiotemporal distribution of EV charging load prediction[J].Power System Protection and Control,2021,49(20):82-91.
[19]MA H Y,WANG J H,ZHENG T,et al.A model for electric vehicle charging load forecasting based on simulated driving path[J].IOP Conference Series:Materials Science and Engineering,2019,486(1):012115.
[20]罗浩成,胡泽春,张洪财.环境温度对电动汽车充电负荷的影响分析[J].电力建设,2015,36(7):69-74.
LUO Hao-cheng,HU Ze-chun,ZHANG Hong-cai.Effect analysis of ambient temperature on electric vehicle charging load[J].Electric Power Construction,2015,36(7):69-74.
[21]王海玲,张美霞,杨 秀.基于气温影响的电动汽车充电需求预测[J].电测与仪表,2017,54(23):123-128.
WANG Hai-ling,ZHANG Mei-xia,YANG Xiu.Electric vehicle charging demand forecasting based on influence of weather and temperature[J].Electrical Measurement & Instrumentation,2017,54(23):123-128.
[22]BAE S,KWASINSKI A.Spatial and temporal model of electric vehicle charging demand[J].IEEE Transactions on Smart Grid,2012,3(1):394-403.
[23]葛少云,冯 亮,刘 洪,等.考虑电量分布及行驶里程的高速公路充电站规划[J].电力自动化设备,2013,33(7):111-116.
GE Shao-yun,FENG Liang,LIU Hong,et al.Planning of charging stations on highway considering power distribution and driving mileage[J].Electric Power Automation Equipment,2013,33(7):111-116.
[24]韩晓娟,王丽娜,高 僮,等.基于成本和效益分析的并网光储微网系统电源规划[J].电工技术学报,2016,31(14):31-39,66.
HAN Xiao-juan,WANG Li-na,GAO Tong,et al.Generation planning of grid-connected micro-grid system with PV and batteries storage system based on cost and benefit analysis[J].Transactions of China Electrotechnical Society,2016,31(14):31-39,66.
[25]袁华骏,叶筱怡,耿宗璞.考虑经济成本的微电网调度运行[J].电气自动化,2021,43(5):48-50.
YUAN Hua-jun,YE Xiao-yi,GENG Zong-pu.Dispatching operation of micro-grids considering economic cost[J].Electric Automation,2021,43(5):48-50.
[26]李 奇,黄兰佳,邱宜彬,等.含EVs的交直流混合微电网两阶段鲁棒调度优化[J].西南交通大学学报,2020,57(1):36-45.
LI Qi,HUANG Lan-jia,QIU Yi-bin,et al.Two-stage robust scheduling optimization of AC/DC hybrid microgrid with electric vehicles[J].Journal of Southwest Jiaotong University,2020,57(1):36-45.
[27]肖朝霞,张可信,冯 冀.含电动汽车充电站的风/光/柴独立微电网分层优化调度[J].天津工业大学学报,2022,41(4):61-74.
XIAO Zhao-xia,ZHANG Ke-xin,FENG Ji.Hierarchical optimal dispatching of wind/PV/diesel islanded microgrid with EVs charging station[J].Journal of Tiangong University,2022,41(4):61-74.
[28]林 婷,高 亮.含电动汽车的微电网规划研究[J].电力科学与技术学报,2021,36(4):53-58.
LIN Ting,GAO Liang.Planning research of micro-grid with electric vehicles[J].Journal of Electric Power Science and Technology,2021,36(4):53-58.
[29]刘舒真,崔昊杨,刘 昊,等.考虑车网互动的风-光-车-储微网容量配置方法[J].科技创新与应用,2021,11(14):123-127,130.
LIU Shu-zhen,CUI Hao-yang,LIU Hao.Considering V2G Interaction:Capacity configuration method for wind-solar-vehicle-storage microgrid[J].Technology Innovation and Application,2021,11(14):123-127,130.
[30]郭永强,张 靖,何 宇,等.考虑电动汽车充放电响应的微电网混合储能配置[J].电网与清洁能源,2022,38(8):82-93.
GUO Yong-qiang,ZHANG Jing,HE Yu,et al.Hybrid energy storage configuration of micro-grid considering charge-discharge response of EVs[J].Power System and Clean Energy,2022,38(8):82-93.
[31]陈艳波,田昊欣,刘宇翔,等.计及电动汽车需求响应的高速公路服务区光储充鲁棒优化配置[J/OL].中国电机工程学报,2024:1-16[2024-09-02].https://doi.org/10.13334/j.0258-8013.pcsee.231850.
CHEN Yan-bo,TIAN Hao-xin,LIU Yu-xiang,et al.Robust optimization configuration of photovoltaic-energy storage-charging integrated system in expressway service area considering demand response of electric vehicles[J/OL].Proceedings of the CSEE,2024:1-16[2024-09-02].https://doi.org/10.13334/j.0258-8013.pcsee.231850.

相似文献/References:

[1]王建伟,李娉,高洁,等.中国交通运输碳减排区域划分[J].长安大学学报(自然科学版),2012,32(01):0.
[2]李曙光,周庆华.具有破坏排队的离散时间动态网络装载算法[J].长安大学学报(自然科学版),2012,32(01):0.
[3]凌海兰,郗恩崇.基于随机波动条件的公交客运量预测模型[J].长安大学学报(自然科学版),2012,32(01):0.
[4]田娥,肖庆,陆小佳,等.安全驾驶的横向安全预警报警阈值的确定[J].长安大学学报(自然科学版),2012,32(01):0.
[5]侯贻栋,赵炜华,魏 朗,等.驾驶人空间距离判识规律心理学分析[J].长安大学学报(自然科学版),2012,32(03):86.
 HOU Yi-dong,ZHAO Wei-hua,WEI Lang,et al.Analysis on psychology in cognitive distance about drivers[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):86.
[6]赵跃峰,张生瑞,魏 华.隧道群路段运行速度特性分析[J].长安大学学报(自然科学版),2012,32(06):67.
 ZHAO Yue-feng,ZHANG Sheng-rui,WEI hua.Operating speed characteristics of tunnel group section[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):67.
[7]林 杉,许宏科,刘占文.一种高速公路隧道交通流元胞自动机模型[J].长安大学学报(自然科学版),2012,32(06):73.
 LIN Shan,XU Hong-ke,LIU Zhan-wen.One cellular automaton traffic flow model for expressway tunnel[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):73.
[8]刘俊德,徐 兵,梁永东,等.交通事故下高速公路行车安全评估[J].长安大学学报(自然科学版),2012,32(06):78.
 LIU Jun-de,XU bing,LIANG Yong-dong,et al.Traffic safety assessment of expressway in the accident[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):78.
[9]芮海田,吴群琪,赵跃峰,等.公路建设对区域经济发展的影响分析——以陕西省为例[J].长安大学学报(自然科学版),2012,32(06):83.
 RUI Hai-tian,WU Qun-qi,ZHAO Yue-feng,et al.Influence of highway construction on regional economy development——taking Shaanxi as an example[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):83.
[10]彭 辉,续宗芳,韩永启,等.城市群城际运输结构配置客流分担率模型[J].长安大学学报(自然科学版),2012,32(02):91.
 PENG Hui,XU Zong-fang,HAN Yong-qi,et al.Sharing ratios model of passenger flows in intercity transportation structure configuration among urban agglomeration[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):91.

备注/Memo

备注/Memo:
收稿日期:2024-07-01
基金项目:国家重点研发计划项目(2021YFB2601300); 中央高校基本科研业务费专项资金项目(300102383202)
作者简介:张懿璞(1985-),男,陕西西安人,教授,博士研究生导师,E-mail:zyipu@chd.edu.cn。
更新日期/Last Update: 2024-10-20