[1]宁 津,冯璋洁,纪文童,等.基于序贯蒙特卡洛的高速公路自洽能源系统适配性评估[J].长安大学学报(自然科学版),2024,44(5):71-88.[doi:10.19721/j.cnki.1671-8879.2024.05.007]
 NING Jin,FENG Zhang-jie,JI Wen-tong,et al.Evaluation of supply and demand fitness for highway self-consistent energy systems based on sequential Monte-Carlo[J].Journal of Chang’an University (Natural Science Edition),2024,44(5):71-88.[doi:10.19721/j.cnki.1671-8879.2024.05.007]
点击复制

基于序贯蒙特卡洛的高速公路自洽能源系统适配性评估()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第44卷
期数:
2024年5期
页码:
71-88
栏目:
交通能源融合技术专题
出版日期:
2024-10-10

文章信息/Info

Title:
Evaluation of supply and demand fitness for highway self-consistent energy systems based on sequential Monte-Carlo
文章编号:
1671-8879(2024)05-0071-18
作者:
宁 津冯璋洁纪文童叶笑容黄 仙
(华北电力大学 控制与计算机工程学院,北京 102206)
Author(s):
NING Jin FENG Zhang-jie JI Wen-tong YE Xiao-rong HUANG Xian
(School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)
关键词:
交通工程 高速公路自洽能源系统 序贯蒙特卡洛 多微电网 适配性 系统综合评价
Keywords:
traffic engineering highway self-consistent energy systems sequential Monte-Carlo multiple microgrids fitness integrated system evaluation
分类号:
U491.54
DOI:
10.19721/j.cnki.1671-8879.2024.05.007
文献标志码:
A
摘要:
针对规划以非碳基能源发电为高速公路用电负荷(包括服务区、隧道、桥梁、收费站等)供能的适配性问题,首先构建包含自洽率、供电可靠率、缺电频率等10个指标的高速公路自洽能源系统适配性指标体系。其次,充分考虑系统供需两侧的不确定性,基于蒙特卡洛模拟生成风、光场景集,并依次建立风-光-储发电模型、计及气候变化和投入使用时间两因素的元件时变可靠性模型、包含储能系统调度与子微网间互联的多微电网运行控制策略,应用序贯蒙特卡洛法建立适配性指标的定量评估方法。选取适配性指标体系中的自洽率、供电可靠率以及缺电频率等5个指标作为评级主要依据,基于层次分析法建立适配性综合等级评定方法。最后,进行算例仿真,分析基于不同的风-光-储设备配置方案下,不同微网间功率互联约束与可靠性模型对系统适配性指标评估结果产生的影响。研究结果表明:通过微网间的功率互济可有效提升系统整体适配性,当互联量约束设定为最大子微网负荷的20%时,相比独立子微网未互联时,系统自洽率指标可提升3%~25%、供电可靠率指标可提升4%~23%,适配性评价结果可提升0~2个等级。
Abstract:
In order to address the fitness of non-carbon-based energy generation for supplying electricity to highway loads(including service areas, tunnels, bridges, toll stations, etc.), a highway self-consistent energy systems fitness index system was constructed, which includes 10 indexes including self-consistency rate, power supply reliability rate, and frequency of power shortage, etc. Secondly, the wind and light scenarios were generated based on Monte-Carlo simulation, and the wind-optical-storage model was established. Secondly, the uncertainty of both supply and demand sides of the system was fully considered, and the wind and light scenarios were generated based on Monte-Carlo simulation, and the wind-photovoltaic-storage power generation model, the time-varying reliability model of the components taking into account the factors of climate change and the time of commissioning, and the multi-microgrid operation and control strategy including the scheduling of the storage system and the interconnection between the sub-microgrids were established in turn, and the quantitative assessment method of the fitness indexes was established by the application of the sequential Monte-Carlo method. The method of quantitative assessment of the fitness indexes was applied by sequential Monte-Carlo method. Then, five indicators in the fitness index system, such as self-consistency rate, power supply reliability rate, and power shortage frequency, were selected as the main basis for rating, and a comprehensive rating method for fitness was established based on the hierarchical analysis method. Finally, arithmetic simulations were carried out to analyze the impact of different inter-microgrid power interconnection constraints and reliability models on the results of the system's fitness index assessment based on different wind-photovoltaic-storage equipment configuration schemes. The results show that the power interconnection between microgrids can effectively improve the overall system fitness, and when the interconnection constraint is set to 20% of the maximum sub-microgrid load, compared with the independent sub-microgrids without interconnection, the system self-consistency index improves by about 3% to 25%, the power supply reliability index improves by about 4% to 23%, and the fitness evaluation results improve by zero to two grades.17 tabs, 16 figs, 35 refs.

参考文献/References:

[1] GB/T 2900.103—2020,电工术语:发电、输电及配电电力系统可信性及服务质量[S].
GB/T 2900.103—2020,Electrotechnical terminology-Generation,transmission and distribution of electrical energy-Dependability and quality of service of electric power systems[S].
[2]DL/T 5542—2020,配电网规划设计规程[S].
DL/T 5542—2020,Distribution network planning and design regulations[S].
[3]IEEE Std 1366—2003,IEEE guide for electric power distribution reliability[S].
[4]T/CECS G:D85-08—2021,公路直流供电系统设计标准[S].
T/CECS G:D85-08-2021,Highway DC power supply system design standard[S].
[5]TB 10621—2014,高速铁路设计规范[S].
TB 10621—2014,Code for design of high speed railway[S].
[6]GB/Z 32880.2—2016,电能质量经济性评估 第2部分:公用配电网的经济性评估方法[S].
GB/Z 32880.2—2016.Economic assessment of power quality-Part 2:Methods for economic assessment of public distribution networks[S].
[7]NIKKHAH M H,LOTFI H,SAMADI M,et al.Optimal allocation of transmission fixed costs to electric vehicle charging stations and wind farms using an analytical method and structural decomposition[J].Sustainable Energy,Grids and Networks,2023,34:101061.
[8]JO S T,KIM W H,LEE Y K,et al.Multi-objective optimal design of SPMSM for electric compressor using analytical method and NSGA-Ⅱ algorithm[J].Energies,2022,15(20):7510-7525.
[9]LIU X,CAO Z J,LI D Q,et al.Adaptive Monte Carlo simulation method and its applications to reliability analysis of series systems with a large number of components[J].Journal of Risk and Uncertainty in Engineering Systems,Part A:Civil Engineering,2022,8(1):1-17.
[10]胡晓静.含柔性直流的交直流混合电网运行风险评估方法研究[D].北京:中国电力科学研究院,2018.
HU Xiao-jing.Research on operation risk assessment method for hybrid AC/DC power system with the VSC station[D].Beijing:China Electric Power Research Institute,2018.
[11]SUN X,LIU Y L,DENG L C.Reliability assessment of cyber-physical distribution network based on the fault tree[J].Renewable Energy,2020,155:1411-1424.
[12]陈 铮,陈 武,马建军.适用于直流配电网的组合电容型直流负荷开关[J].电力工程技术,2022,41(5):124-130.
CHEN Zheng,CHEN Wu,MA Jian-jun.Assembly DC load switch based on pre-charged capacitors suitable for DC distribution network[J].Electric Power Engineering Technology,2022,41(5):124-130.
[13]QUILES-CUCARELLA E,MARQUINA-TAJUELO A,ROLDAN-BLAY C,et al.Particle swarm optimization method for stand-alone photovoltaic system reliability and cost evaluation based on Monte Carlo simulation[J].Applied Sciences,2023,13(21):11623.
[14]CARVALHO J H,SCHWARTZ U B,BORGES C L T.Copula based model for representation of hybrid power plants in non-sequential Monte Carlo reliability evaluation[J].Sustainable Energy,Grids and Networks,2023,35:101077.
[15]GUIMARÃES I O,LEITE DA S A M,NASCIMENTO L C,et al.Reliability assessment of distribution grids with DG via quasi-sequential Monte Carlo simulation[J].Electric Power Systems Research,2024,229:110-122.
[16]LIU W X,GUO D P,XU Y H,et al.Reliability assessment of power systems with photovoltaic power stations based on intelligent state space reduction and pseudo-sequential Monte Carlo simulation[J].Energies,2018,11(6):1419-1431.
[17]GUO J,LIU W X,SYED F R,et al.Reliability assessment of a cyber physical microgrid system in island mode[J].CSEE Journal of Power and Energy Systems,2019,5(1):46-55.
[18]GHOLAMI M,MUYEEN S M,MOUSAVI S A.Development of new reliability metrics for microgrids:Integrating renewable energy sources and battery energy storage system[J].Energy Reports,2023,10:2251-2259.
[19]SAI K R,SURESH R S.A mixed integer optimization model for reliability indices enhancement in micro-grid system with renewable generation and energy storage[J].Materials Today:Proceedings,2023,80:2937-2944.
[20]ALAVI O,KAAYA I,DE JONG R,et al.Assessing the impact of PV panel climate-based degradation rates on inverter reliability in grid-connected solar energy systems[J].Heliyon,2024,10(3):e25839.
[21]NGO D V,LIM J K,KIM D H.Reliability analysis and life prediction of aging LNG unloading arms based on non-destructive test data[J].Energies,2022,15(24):9408.
[22]CHEN J,YU Z H,CHEN G Y,et al.Calculation of carbon emission during expressway operation period based on energy consumption analysis[J].IOP Conference Series:Earth and Environmental Science,2021,647(1):012190.
[23]PELOSI D,LONGO M,BIDINI G,et al.A new concept of highways infrastructure integrating energy storage devices for e-mobility transition[J].Journal of Energy Storage,2023,65:107364.
[24]贾利民,师瑞峰,吉 莉,等.我国道路交通与能源融合发展战略研究[J].中国工程科学,2022,24(3):163-172.
JIA Li-min,SHI Rui-feng,JI Li,et al.Road transportation and energy integration strategy in China[J].Strategic Study of CAE,2022,24(3):163-172.
[25]SHIPP A J,JANSEN K J.Reinterpreting time in fit theory:Crafting and recrafting narratives of fit in medias res[J].Academy of Management Review,2011,36(1):76-101.
[26]HAN F C,LI X,SHI W,et al.Generic fully coupled framework for reliability assessment of offshore wind turbines under typical limit states[J].Engineering Structures,2024,304:117692.
[27]ABBES D,MARTINEZ A,CHAMPENOIS G.Life cycle cost,embodied energy and loss of power supply probability for the optimal design of hybrid power systems[J].Mathematics and Computers in Simulation,2014,98:46-62.
[28]ZHANG J M,LIU J,CHEN L,et al.Reliability evaluation of high permeability renewable energy distribution network considering energy storage charge and discharge strategy[J].Energy Reports,2023,9:361-368.
[29]LIU Q M,DONG M,PENG Y.A novel method for online health prognosis of equipment based on hidden semi-Markov model using sequential Monte Carlo methods[J].Mechanical Systems and Signal Processing,2012,32:331-348.
[30]RAHMAT M K,JOVANOVIC S,LO K L.Reliability and availability modelling of uninterruptible power supply systems using Monte-Carlo simulation[J].International Journal on Energy Conversion,2017,5(2):60.
[31]王海巍.考虑不确定性的配电网可靠性研究[D].北京:华北电力大学,2011.
WANG Hai-wei.Reliability evaluation of distribution systems considering uncertainty[D].Beijing:North China Electric Power University,2011.
[32]ODAT A S,ALZOUBI O,SHBOUL B,et al.Dynamic and adaptive maximum power point tracking using sequential Monte Carlo algorithm for photovoltaic system[J].Arabian Journal for Science and Engineering,2023,48(11):15063-15083.
[33]ZHANG S F,YU X L,MAO H J,et al.Evaluating expressway safety based on fuzzy comprehensive evaluation with AHP-entropy method:A case study of Jinliwen Expressway in Zhejiang Province,China[J].Systems,2023,11(10):496.
[34]MITROFANOV A N,GARANIN M A,OKLADOV S A.Construction of digital-twin models of electrical infrastructure of railways to assess the resource of load capacity[J].Russian Electrical Engineering,2023,94(10):699-703.
[35]孙光辉,沈国荣.加强三道防线建设确保电网的安全稳定运行(摘要)[J].电力安全技术,2004,6(7):9.
SUN Guang-hui,SHEN Guo-rong.Strengthening the construction of three defense lines to ensure the safe and stable operation of power grid(abstract)[J].Electric Safety Technology,2004,6(7):9.

相似文献/References:

[1]王建伟,李娉,高洁,等.中国交通运输碳减排区域划分[J].长安大学学报(自然科学版),2012,32(01):0.
[2]李曙光,周庆华.具有破坏排队的离散时间动态网络装载算法[J].长安大学学报(自然科学版),2012,32(01):0.
[3]凌海兰,郗恩崇.基于随机波动条件的公交客运量预测模型[J].长安大学学报(自然科学版),2012,32(01):0.
[4]田娥,肖庆,陆小佳,等.安全驾驶的横向安全预警报警阈值的确定[J].长安大学学报(自然科学版),2012,32(01):0.
[5]侯贻栋,赵炜华,魏 朗,等.驾驶人空间距离判识规律心理学分析[J].长安大学学报(自然科学版),2012,32(03):86.
 HOU Yi-dong,ZHAO Wei-hua,WEI Lang,et al.Analysis on psychology in cognitive distance about drivers[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):86.
[6]赵跃峰,张生瑞,魏 华.隧道群路段运行速度特性分析[J].长安大学学报(自然科学版),2012,32(06):67.
 ZHAO Yue-feng,ZHANG Sheng-rui,WEI hua.Operating speed characteristics of tunnel group section[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):67.
[7]林 杉,许宏科,刘占文.一种高速公路隧道交通流元胞自动机模型[J].长安大学学报(自然科学版),2012,32(06):73.
 LIN Shan,XU Hong-ke,LIU Zhan-wen.One cellular automaton traffic flow model for expressway tunnel[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):73.
[8]刘俊德,徐 兵,梁永东,等.交通事故下高速公路行车安全评估[J].长安大学学报(自然科学版),2012,32(06):78.
 LIU Jun-de,XU bing,LIANG Yong-dong,et al.Traffic safety assessment of expressway in the accident[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):78.
[9]芮海田,吴群琪,赵跃峰,等.公路建设对区域经济发展的影响分析——以陕西省为例[J].长安大学学报(自然科学版),2012,32(06):83.
 RUI Hai-tian,WU Qun-qi,ZHAO Yue-feng,et al.Influence of highway construction on regional economy development——taking Shaanxi as an example[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):83.
[10]彭 辉,续宗芳,韩永启,等.城市群城际运输结构配置客流分担率模型[J].长安大学学报(自然科学版),2012,32(02):91.
 PENG Hui,XU Zong-fang,HAN Yong-qi,et al.Sharing ratios model of passenger flows in intercity transportation structure configuration among urban agglomeration[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):91.
[11]黄 仙,纪文童,叶笑容,等.基于机会约束的高速公路自洽能源系统规划方法[J].长安大学学报(自然科学版),2024,44(5):36.[doi:10.19721/j.cnki.1671-8879.2024.05.004]
 HUANG Xian,JI Wen-tong,YE Xiao-rong,et al.Planning of highway self-consistent energy system based on chance-constrained programming[J].Journal of Chang’an University (Natural Science Edition),2024,44(5):36.[doi:10.19721/j.cnki.1671-8879.2024.05.004]

备注/Memo

备注/Memo:
收稿日期:2024-05-12
基金项目:国家重点研发计划项目(2021YFB2601300)
作者简介:宁 津(1997-),男,内蒙古赤峰人,工学博士研究生,E-mail:ning.jin@ncepu.edu.cn。
通讯作者:黄 仙(1966-),男,江西赣州人,教授,博士研究生导师,E-mail:hx@ncepu.edu.cn。
更新日期/Last Update: 2024-10-20