[1]李艳波,刘妙阳,李林宜,等.高速公路服务区自洽能源系统的IWOA-LSSVM光伏功率短期预测[J].长安大学学报(自然科学版),2024,44(5):47-56.[doi:10.19721/j.cnki.1671-8879.2024.05.005]
 LI Yan-bo,LIU Miao-yang,LI Lin-yi,et al.Short-term prediction of photovoltaic power by IWOA-LSSVM for self-consistent energy system in highway service areas[J].Journal of Chang’an University (Natural Science Edition),2024,44(5):47-56.[doi:10.19721/j.cnki.1671-8879.2024.05.005]
点击复制

高速公路服务区自洽能源系统的IWOA-LSSVM光伏功率短期预测()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第44卷
期数:
2024年5期
页码:
47-56
栏目:
交通能源融合技术专题
出版日期:
2024-10-10

文章信息/Info

Title:
Short-term prediction of photovoltaic power by IWOA-LSSVM for self-consistent energy system in highway service areas
文章编号:
1671-8879(2024)05-0047-10
作者:
李艳波1刘妙阳2李林宜1王龙飞3陈俊硕1王秋才2刘珈汐4
(1. 长安大学 能源与电气工程学院,陕西 西安 710064; 2. 长安大学 电子与控制工程学院,陕西 西安 710064; 3. 大理大学 工程学院,云南 大理 671003; 4. 国能准能集团有限责任公司,内蒙古 鄂尔多斯 017000)
Author(s):
LI Yan-bo1 LIU Miao-yang2 LI Lin-yi1 WANG Long-fei3 CHEN Jun-shuo1 WANG Qiu-cai2 LIU Jia-xi4
(1. School of Energy and Electrical Engineering, Chang'an University, Xi'an 710064,Shaanxi, China; 2. School of Electronic and Control Engineering, Chang'an University, Xi'an 710064, Shannxi, China; 3. School of Engineering, Dali University, Dali 671003, Yunnan, China; 4. Guoneng Zhunneng Group CO., LTD., Erdos 017000, Inner Mongolia, China)
关键词:
交通工程 光伏功率预测 鲸鱼算法 自洽能源系统 最小二乘支持向量机vy飞行
Keywords:
traffic engineering photovoltaic power prediction whale algorithm self-consistent energy systems least squares support vector machinesvy flights
分类号:
U491.8
DOI:
10.19721/j.cnki.1671-8879.2024.05.005
文献标志码:
A
摘要:
为了推动高速公路绿色转型发展,提高交通领域可再生能源自洽率,针对高速公路场景下光伏发电功率预测精度不高的问题,提出一种改进鲸鱼优化算法(IWOA)优化最小二乘支持向量机(LSSVM)的预测模型(IWOA-LSSVM)。首先,对鲸鱼优化算法(WOA)进行改进,在初始化过程中加入混沌映射Tent和随机变量来增加初始化种群的多样性,提高发现全局最优解的概率; 在WOA中引入非线性收敛因子和自适应权重的方法、有效提高全局搜索和局部搜索的能力; 在螺旋更新阶段融合Lévy飞行策略,扩大搜索空间的覆盖范围,提升算法的全局优化能力,通过以上改进方法以优化LSSVM的模型参数,解决盲目选参问题。其次,构建IWOA-LSSVM,对收集到的历史数据进行分析并根据光伏电站实际环境使用Pearson相关系数评估关键气候影响因素,利用该方法得到模型初始参数。最后,通过对河北某高速公路服务区光伏电站的实际数据进行仿真试验。研究结果表明:在不同天气条件下,IWOA-LSSVM的预测精度均高于LSSVM; 晴天时,IWOA-LSSVM相比于LSSVM的均方根误差RMSE和平均绝对误差MAE分别下降了26.87%和25.92%; 阴天时,IWOA-LSSVM相比于LSSVM的RMSEMAE分别下降了8%和6%; 雨天时,IWOA-LSSVM相比于LSSVM的RMSEMAE下降最高,分别为49.6%和60%,模型预测精度提升最为显著; 该模型提高了光伏发电功率预测精度,提升了高速公路自洽能源系统光伏发电的经济效益。
Abstract:
In order to promote the development of highway green transformation and improve the self-referential rate of renewable energy in the transport sector, and to address the problem of low accuracy of PV power prediction in highway scenarios, an improved whale algorithm(IWOA)was proposed to optimize the prediction model for least squares support vector machine(LSSVM). Firstly, the traditional whale optimization algorithm was improved by adding the chaotic mapping Tent and random variables in the initialization process to increase the diversity of the initialized population, which improves the probability of discovering the globally optimal solution. A non-linear convergence factor and an adaptive weighting method were introduced into the whale optimization strategy to effectively improve the ability of both global and local searches, and a Lévy was integrated into the spiral updating phase to expand the search space. Flight strategy in the spiral updating stage, which expands the coverage of the search space and enhances the global optimization ability of the algorithm, through the above improvement methods in order to optimize the model parameters of the LSSVM and solve the problem of blind parameter selection. Secondly, the IWOA-LSSVM was constructed, and the collected historical data were analyzed and the key climate influencing factors were evaluated according to the actual environment of the PV plant using the Pearson correlation coefficient, which was used to obtain the initial parameters of the model. Finally, simulation experiments were carried out by simulating the actual data from a PV power plant in a highway service area in Hebei. The results show that the prediction accuracy of the IWOA-LSSVM is higher than that of the LSSVM model under different weather conditions, and the RMSE and MAE of the IWOA-LSSVM in a sunny day are reduced by 26.87% and 25.92%, respectively, compared to that of the LSSVM. In cloudy days, the RMSE and MAE of the IWOA-LSSVM decreased by 8% and 6%, respectively, compared to the LSSVM. Especially in rainy days, the IWOA-LSSVM had the highest percentage decreases in RMSE and MAE compared to the LSSVM, decreased by 49.6% and 60%, respectively, and the model's prediction accuracy was most significantly improved, and the model improved the PV the model improves the prediction accuracy of PV power generation and thus enhances the economic efficiency of PV power generation in highway self-consistent energy systems.4 tabs, 6 figs, 23 refs.

参考文献/References:

[1] 马 静,徐宏璐,马瑞辰,等.能源交通融合下的弹性公路能源系统发展技术要点及展望[J].电网技术,2023,47(3):885-896.
MA Jing,XU Hong-lu,MA Rui-chen,et al.A review on the development of resilient highway energy system under the integration of energy and transportation[J].Power System Technology,2023,47(3):885-896.
[2]彭余华,唐 娜,朱鑫维.高速公路风光能源自洽照明的功能配置方法[J].长安大学学报(自然科学版),2024,44(1):120-128.
PENG Yu-hua,TANG Na,ZHU Xin-wei.Functional configuration method of expressway wind-solar energy self-consistent lighting[J].Journal of Chang'an University(Natural Science Edition),2024,44(1):120-128.
[3]WANG H Z,YI H Y,PENG J C,et al.Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network[J].Energy Conversion and Management,2017,153:409-422.
[4]余向阳,赵怡茗,杨宁宁,等.基于VMD-SE-LSSVM和迭代误差修正的光伏发电功率预测[J].太阳能学报,2020,41(2):310-318.
YU Xiang-yang,ZHAO Yi-ming,YANG Ning-ning,et al.Photovoltaic power generation forecasting based on VMD-SE-LSSVM and iterative error correction[J].Acta Energiae Solaris Sinica,2020,41(2):310-318.
[5]商立群,李洪波,侯亚东,等.基于VMD-ISSA-KELM的短期光伏发电功率预测[J].电力系统保护与控制,2022,50(21):138-148.
SHANG Li-qun,LI Hong-bo,HOU Ya-dong,et al.Short-term photovoltaic power generation prediction based on VMD-ISSA-KELM[J].Power System Protection and Control,2022,50(21):138-148.
[6]贾鹏云.基于深度学习算法的短期光伏发电功率预测研究[D].北京:华北电力大学,2021.
JIA Peng-yun.Research on short term photovoltaic power prediction based on deep learning[D].Beijing:North China Electric Power University,2021.
[7]马苗苗,刘立成,王 鑫,等.风光发电与新能源汽车协同优化调度策略[J].吉林大学学报(工学版),2022,52(9):2096-2106.
MA Miao-miao,LIU Li-cheng,WANG Xin,et al.Coordinated optimal dispatch strategy of wind and photovoltaic power generation and new energy vehicles[J].Journal of Jilin University(Engineering and Technology Edition),2022,52(9):2096-2106.
[8]WEI D Q,WANG B,LIN G,et al.Research on unstructured text data mining and fault classification based on RNN-LSTM with malfunction inspection report[J].Energies,2017,10(3):406.
[9]WANG K J,QI X X,LIU H D.Photovoltaic power forecasting based LSTM-Convolutional Network[J].Energy,2019,189:116225.
[10]薛 阳,燕宇铖,贾 巍,等.基于改进灰狼算法优化长短期记忆网络的光伏功率预测[J].太阳能学报,2023,44(7):207-213.
XUE Yang,YAN Yu-cheng,JIA Wei,et al.Photovoltaic power prediction model based on IGWO-LSTM[J].Acta Energiae Solaris Sinica,2023,44(7):207-213.
[11]殷 樾.基于粒子群算法-最小二乘支持向量机的日前光伏功率预测[J].分布式能源,2021,6(2):68-74.
YIN Yue.Day-ahead photovoltaic power forecasting based on particle swarm optimization and least squares support vector machine[J].Distributed Energy,2021,6(2):68-74.
[12]孙 薇,刘默涵.基于改进最小二乘支持向量机的短期负荷预测[J].电力科学与工程,2015,31(12):16-21,33.
SUN Wei,LIU Mo-han.Short-term load forecasting based on improved least squares-support vector machine[J].Electric Power Science and Engineering,2015,31(12):16-21,33.
[13]张彩庆,郑 强.SKBA-LSSVM短期光伏发电功率预测模型[J].电力系统及其自动化学报,2019,31(8):86-93.
ZHANG Cai-qing,ZHENG Qiang.SKBA-LSSVM short-term forecasting model for PV power generation[J].Proceedings of the CSU-EPSA,2019,31(8):86-93.
[14]时 珉,许 可,王 珏,等.基于灰色关联分析和GeoMAN模型的光伏发电功率短期预测[J].电工技术学报,2021,36(11):2298-2305.
SHI Min,XU Ke,WANG Jue,et al.Short-term photovoltaic power forecast based on grey relational analysis and GeoMAN model[J].Transactions of China Electrotechnical Society,2021,36(11):2298-2305.
[15]李 争,罗晓瑞,张 杰,等.基于改进麻雀搜索算法的光伏功率短期预测[J].太阳能学报,2023,44(6):284-289.
LI Zheng,LUO Xiao-rui,ZHANG Jie,et al.Short term prediction of photovoltaic power based on improved sparrow search algorithm[J].Acta Energiae Solaris Sinica,2023,44(6):284-289.
[16]李雪林,孙玉坤.基于改进果蝇算法优化的最小二乘支持向量机动力锂电池荷电状态预测[J].南京工业大学学报(自然科学版),2023,45(6):676-681.
LI Xue-lin,SUN Yu-kun.State of charge of power lithium battery predicted by least square support vector machines based on improved fruit fly algorithm(IFOA)[J].Journal of Nanjing Tech University(Natural Science Edition),2023,45(6):676-681.
[17]张育凡.基于蚱蜢优化和最小二乘支持向量机的电力负荷预测研究[D].兰州:兰州大学,2018.
ZHANG Yu-fan.A research based on hybrid methods GOA and LSSVM for electric load forecasting[D].Lanzhou:Lanzhou University,2018.
[18]MIRJALILI S,LEWIS A.The whale optimization algorithm[J].Advances in Engineering Software,2016,95:51-67.
[19]HUSSIEN A G,HASSANIEN A E,HOUSSEIN E H,et al.New binary whale optimization algorithm for discrete optimization problems[J].Engineering Optimization,2020,52(6):945-959.
[20]李士勇,李 研,林永茂.智能优化算法与涌现计算[M].2版.北京:清华大学出版社,2022.
LI Shi-yong,LI Yan,LIN Yong-mao.Intelligent optimization algorithms and emergent computation[M].2nd ed.Beijing:Tsinghua University Press,2022.
[21]李畸勇,张伟斌,赵新哲,等.改进鲸鱼算法优化支持向量回归的光伏最大功率点跟踪[J].电工技术学报,2021,36(9):1771-1781.
LI Ji-yong,ZHANG Wei-bin,ZHAO Xin-zhe,et al.Global maximum power point tracking for PV array based on support vector regression optimized by improved whale algorithm[J].Transactions of China Electrotechnical Society,2021,36(9):1771-1781.
[22]吕 鑫,慕晓冬,张 钧,等.混沌麻雀搜索优化算法[J].北京航空航天大学学报,2021,47(8):1712-1720.
LU Xin,MU Xiao-dong,ZHANG Jun,et al.Chaos sparrow search optimization algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2021,47(8):1712-1720.
[23]孟宪猛,蔡翠翠.基于精英反向学习和Lévy飞行的鲸鱼优化算法[J].电子测量技术,2021,44(20):82-87.
MENG Xian-meng,CAI Cui-cui.Whale optimization algorithm based on elite reverse learning and Lévy flight[J].Electronic Measurement Technology,2021,44(20):82-87.

相似文献/References:

[1]王建伟,李娉,高洁,等.中国交通运输碳减排区域划分[J].长安大学学报(自然科学版),2012,32(01):0.
[2]李曙光,周庆华.具有破坏排队的离散时间动态网络装载算法[J].长安大学学报(自然科学版),2012,32(01):0.
[3]凌海兰,郗恩崇.基于随机波动条件的公交客运量预测模型[J].长安大学学报(自然科学版),2012,32(01):0.
[4]田娥,肖庆,陆小佳,等.安全驾驶的横向安全预警报警阈值的确定[J].长安大学学报(自然科学版),2012,32(01):0.
[5]侯贻栋,赵炜华,魏 朗,等.驾驶人空间距离判识规律心理学分析[J].长安大学学报(自然科学版),2012,32(03):86.
 HOU Yi-dong,ZHAO Wei-hua,WEI Lang,et al.Analysis on psychology in cognitive distance about drivers[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):86.
[6]赵跃峰,张生瑞,魏 华.隧道群路段运行速度特性分析[J].长安大学学报(自然科学版),2012,32(06):67.
 ZHAO Yue-feng,ZHANG Sheng-rui,WEI hua.Operating speed characteristics of tunnel group section[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):67.
[7]林 杉,许宏科,刘占文.一种高速公路隧道交通流元胞自动机模型[J].长安大学学报(自然科学版),2012,32(06):73.
 LIN Shan,XU Hong-ke,LIU Zhan-wen.One cellular automaton traffic flow model for expressway tunnel[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):73.
[8]刘俊德,徐 兵,梁永东,等.交通事故下高速公路行车安全评估[J].长安大学学报(自然科学版),2012,32(06):78.
 LIU Jun-de,XU bing,LIANG Yong-dong,et al.Traffic safety assessment of expressway in the accident[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):78.
[9]芮海田,吴群琪,赵跃峰,等.公路建设对区域经济发展的影响分析——以陕西省为例[J].长安大学学报(自然科学版),2012,32(06):83.
 RUI Hai-tian,WU Qun-qi,ZHAO Yue-feng,et al.Influence of highway construction on regional economy development——taking Shaanxi as an example[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):83.
[10]彭 辉,续宗芳,韩永启,等.城市群城际运输结构配置客流分担率模型[J].长安大学学报(自然科学版),2012,32(02):91.
 PENG Hui,XU Zong-fang,HAN Yong-qi,et al.Sharing ratios model of passenger flows in intercity transportation structure configuration among urban agglomeration[J].Journal of Chang’an University (Natural Science Edition),2012,32(5):91.

备注/Memo

备注/Memo:
收稿日期:2024-05-21
基金项目:国家重点研发计划项目(2021YFB1600202)
作者简介:李艳波(1980-),男,黑龙江抚远人,副教授,工学博士,E-mail:ybl@chd.edu.cn。
通讯作者:王龙飞(1982-),男,黑龙江木兰人,副教授,工学博士,E-mail:wanglongfei@dali.edu.cn。
更新日期/Last Update: 2024-10-20