[1]史培龙,王彩瑞,马强,等.考虑轨迹预测的大曲率道路智能车辆动态避障控制[J].长安大学学报(自然科学版),2024,44(4):161-174.[doi:10.19721/j.cnki.1671-8879.2024.04.015]
 SHI Pei-long,WANG Cai-rui,MA Qiang,et al.Dynamic obstacle avoidance control of intelligent vehicle on large curvature roads considering trajectory prediction[J].Journal of Chang’an University (Natural Science Edition),2024,44(4):161-174.[doi:10.19721/j.cnki.1671-8879.2024.04.015]
点击复制

考虑轨迹预测的大曲率道路智能车辆动态避障控制()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第44卷
期数:
2024年4期
页码:
161-174
栏目:
机械与汽车工程
出版日期:
2024-07-10

文章信息/Info

Title:
Dynamic obstacle avoidance control of intelligent vehicle on large curvature roads considering trajectory prediction
文章编号:
1671-8879(2024)04-0161-14
作者:
史培龙1王彩瑞12马强1刘瑞1赵轩1
(1. 长安大学 汽车学院,陕西 西安 710064; 2. 上海比亚迪有限公司,上海 201611)
Author(s):
SHI Pei-long1 WANG Cai-rui12 MA Qiang1 LIU Rui1 ZHAO Xuan1
(1. School of Automobile, Chang'an University, Xi'an 710064, Shaanxi, China; 2. BYD Auto Shanghai, Shanghai 201611, China)
关键词:
汽车工程 轨迹预测 模型预测控制 跟踪控制 避障轨迹规划 大曲率道路工况
Keywords:
automotive engineering trajectory prediction model predictive control tracking control obstacle avoidance trajectory planning large curvature road condition
分类号:
U461.5
DOI:
10.19721/j.cnki.1671-8879.2024.04.015
文献标志码:
A
摘要:
为了提高智能车辆大曲率道路动态避障安全性,提出基于实时轨迹更新长短时记忆(U-LSTM)神经网络的轨迹预测和基于模糊控制重规划逻辑策略的智能车辆动态避障控制方法。通过提取MATLAB工具箱大曲率道路参数,利用当前时域真实轨迹点信息并训练更新迭代的方法,建立U-LSTM神经网络的轨迹预测模型; 考虑到大曲率道路场景中智能车辆跟踪、避让与自车周围信息的非线性关系,提出基于模糊控制的重规划避障逻辑策略,运用动态规划和二次规划算法、S-T(累积距离预测时域)图法对局部路径的轨迹跟踪和速度控制进行优化; 通过建立跟踪误差模型和速度跟踪模型实现车辆横向和纵向控制,设计用于车辆横向和纵向控制的MPC路径跟踪和速度跟踪控制器,搭建联合仿真模型并验证轨迹预测和控制方法的有效性。研究结果表明:提出的智能车辆动态避障控制方法在大曲率道路上能准确预测车辆的轨迹,U-LSTM神经网络能有效提高预测准确性; 重规划避障逻辑策略能够实现动态障碍物有效避让,且满足车辆纵向和横向跟踪控制精度,能够保证车辆的行驶稳定性。
Abstract:
In order to improve the dynamic obstacle avoidance safety of intelligent vehicles on high curvature roads, a trajectory prediction method based on real-time trajectory update long short term memory(U-LSTM)neural network and a dynamic obstacle avoidance control method for intelligent vehicles based on fuzzy control replanning logic strategy was proposed. A trajectory prediction model for U-LSTM neural network was established by extracting large curvature road parameters from the MATLABtoolbox, utilizing the current time-domain real trajectory point information, and training an updated iterative method. Considering the nonlinear relationship between intelligent vehicle tracking, avoidance, and surrounding information in high curvature road scenes, a replanning obstacle avoidance logic strategy based on fuzzy control is proposed. Dynamic programming and quadratic programming algorithms, as well as S-T graph method, was used to optimize the trajectory tracking and speed control of local paths. By establishing tracking error models and speed tracking models, vehicle lateral and longitudinal control was achieved. An MPC path tracking and speed tracking controller for vehicle lateral and longitudinal control was designed, and a joint simulation model was constructed to verify the rationality and effectiveness of trajectory prediction and control methods. The results show that the intelligent vehicle dynamic obstacle avoidance control method proposed in the article can accurately predict the vehicle's trajectory on high curvature roads, and the real-time trajectory U-LSTM neural network can effectively improve prediction accuracy. The replanning obstacle avoidance logic strategy can effectively avoid dynamic obstacles and meet the accuracy of vehicle longitudinal and lateral tracking control, ensuring the driving stability of the vehicle.7 tabs, 20 figs, 25 refs.

参考文献/References:

[1] GONZALEZ D,PEREZ J,MILANES V,et al.A review of motion planning techniques for automated vehicles[J].IEEE Transactions on Intelligent Transportation Systems,2015,17(4):1135-1145.
[2]陈政宏,李爱娟,邱绪云,等.智能车环境视觉感知及其关键技术研究现状[J].河北科技大学学报,2019,40(1):15-23.
CHEN Zheng-hong,LI Ai-juan,QIU Xu-yun,et al.Survey of environment visual perception for intelligent vehicle and its supporting key technologies[J].Journal of Hebei University of Science and Technology,2019,40(1):15-23
[3]熊 璐,康宇宸,张培志,等.无人驾驶车辆行为决策系统研究[J].汽车技术,2018(8):1-9.
XIONG Lu,KANG Yu-chen,ZHANG Pei-zhi,et al.Research on behavior decision-making system for unmanned vehicle[J].Automobile Technology,2018(8):1-9.
[4]李 柏,张友民,邵之江.自动驾驶车辆运动规划方法综述[J].控制与信息技术,2018(6):1-6.
LI Bai,ZHANG You-min,SHAO Zhi-jiang.Motion planning methodologies for automated vehicles:A critical review[J].Control and Information Technology,2018(6):1-6.
[5]JIN L.Serialized recommendation prediction for steering point behavior of intelligent transportation vehicles based on deep learning[J].IEEE Transactions on Intelligent Transportation Systems,2023,24(11):13350-13358.
[6]LIU P F,FAN W.Extreme gradient boosting(XGBoost)model for vehicle trajectory prediction in connected and autonomous vehicle environment[J].Faculty of Transport and Traffic Sciences,2021,33(5):767-74.
[7]GENG M S,LI J Y,XIA Y J,et al.A physics-informed transformer model for vehicle trajectory prediction on highways[J].Transportation Research Part C,2023,154:1-28.
[8]DJURIC N,RADOSAVLJEVIC V,CUI H,et al.Motion prediction of traffic actors for autonomous driving using deep convolutional networks[EB/OL].(2023-06-28)][2024-06-11].https://doi.org/10.48550/arXiv.1808.05819.
[9]WANG M,LU J.Vehicle trajectory prediction based on LSTM and graph convolutional networks[C]//IEEE.Proceedings of 7th International Conference on Electrical,Mechanical and Computer Engineering.New York:IEEE,2023:884-888.
[10]KIM B,KANG C,KIM J,et al.Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network[C]//IEEE.Proceedings of 2017 20th IEEE International Conference on Intelligent Transportation Systems(ITSC).New York:IEEE,2017:399-404.
[11]DEO N,TRIVEDI M.Multi-modal trajectory prediction of surrounding vehicles with maneuver based LSTMs[C]//IEEE.Proceedings of 2018 IEEE Intelligent Vehicles Symposium(Ⅳ).New York:IEEE,2018:1179-1184.
[12]ALAHI A,GOEL K,RAMANATHAN V,et al.Social LSTM:Human trajectory prediction in crowded spaces[C]//IEEE.Proceedings of 29th IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE,2016:961-971.
[13]WERLING M,ZIEGLER J,KAMMEL S,et al.Optimal trajectory generation for dynamic street scenarios in a Frenet frame[C]//IEEE.Proceedings of 2010 IEEE International Conference on Robotics and Automation.New York:IEEE,2010:987-993.
[14]LIN P,CHOI W,CHUNG C.Local path planning using artificial potential field for waypoint tracking with collision avoidance[C]//IEEE.Proceedings of 2020 23rd IEEE International Conference on Intelligent Transportation Systems(ITSC).New York:IEEE,2020:1-7.
[15]修彩靖,陈 慧.基于改进人工势场法的无人驾驶车辆局部路径规划的研究[J].汽车工程,2013,35(9):808-811.
XIU Cai-jing,CHEN Hui.A research on local path planning for autonomous vehicles based on improved APF method[J].Automotive Engineering,2013,35(9):808-811.
[16]ZHAO B,WANG H,LI Q,et al.PID trajectory tracking control of autonomous ground vehicle based on genetic algorithm[C]//IEEE.Proceedings of 2019 Chinese Control and Decision Conference(CCDC).New York:IEEE,2019:3677-3682.
[17]赵 凯,朱 愿,冯明月,等.基于多点序列预瞄的自动驾驶汽车路径跟踪算法研究[J].汽车技术,2018(11):1-5.
ZHAO Kai,ZHU Yuan,FENG Ming-yue,et al.Research on path tracking algorithm of autonomous vehicles based on multi-point sequence preview[J].Automobile Technology,2018(11):1-5.
[18]SUN Q,LI M,CHENG J,et al.Path tracking control of wheeled mobile robot based on improved pure pursuit algorithm[C]//IEEE.Proceedings of 2019 Chinese Automation Congress(CAC).New York:IEEE,2019:4239-4244.
[19]陈 亮,秦兆博,孔伟伟,等.基于最优前轮侧偏力的智能汽车 LQR 横向控制[J].清华大学学报(自然科学版),2021,61(9):906-912.
CHEN Liang,QIN Zhao-bo,KONG Wei-wei,et al.Lateral control using LQR for intelligent vehicles based on the optimal front-tire lateral force[J].Journal of Tsinghua University(Natural Science Edition),2021,61(9):906-912.
[20]丁幼春,廖庆喜,黄海东,等.联合收获机大曲率路径视觉导航方法[J].农业机械学报,2011,42(增1):122-127.
DING You-chun,LIAO Qing-xi,HUANG Dong-hai,et al.Large curvature path detection for combine harvester based on vision navigation[J].Transactions of the Chinese Society for Agricultural Machinery,2011,42(S1):122-127.
[21]沈 峘,凌 锐,李舜酩.基于预瞄最优曲率模型的大曲率转向控制方法[J].中国机械工程,2012,23(17):2111-2116.
SHEN Heng,LING Rui,LI Shun-ming.Steering control on large curvature road based on preview optimal curvature model[J].China Mechanical Engineering,2012,23(17):2111-2116.
[22]杨 浩,黄 江,李正网,等.基于曲率与车速的两点智能控制驾驶员模型[J].汽车技术,2017,48(8):38-42.
YANG Hao,HUANG Jiang,LI Zheng-wang,et al.Two point intelligent control driver model based on curvature and speed[J].Automobile Technology,2017,48(8):38-42.
[23]张枫毅,王莉华,叶文静.基于多层级LSTM的铝板缺陷检测[J].力学学报,2023,55(11):2566-2576.
ZHANG Feng-yi,WANG Li-hua,YE Wen-jing.Aluminum plate defect detection based on multilevel LSTM[J].Chinese Journal of Theoretical and Applied Mechanics,2023,55(11):2566-2576.
[24]武小花,余忠伟,朱张玲,等.燃料电池公交车模糊能量管理策略[J].吉林大学学报(工学版),2022,52(9):2077-2084.
WU Xiao-hua,YU Zhong-wei,ZHU Zhang-ling,et al.Fuzzy energy management strategy of fuel cell buses[J].Journal of Jilin University(Engineering and Technology Edition),2022,52(9):2077-2084.
[25]龚建伟,姜 岩,徐 威.无人驾驶车辆模型预测控制[M].北京:北京理工大学出版社,2014.
GONG Jian-wei,JIANG Yan,XU Wei.Model predictive control for self-driving vehicle[M].Beijing:Beijing Institute of Technology Press,2014.

相似文献/References:

[1]李耀华,马建,刘晶郁,等.永磁同步电机直接转矩控制电压矢量选择区域[J].长安大学学报(自然科学版),2012,32(01):0.
[2]赵 轩,贺伊琳,余 曼,等.基于MCGS的纯电动汽车智能仪表设计与实现[J].长安大学学报(自然科学版),2012,32(03):96.
 ZHAO Xuan,HE Yi-lin,YU Man,et al.Design and implementation method of intelligent instrument based on MCGS software for electric vehicle[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):96.
[3]李恒宾.基于ALE算法的汽车侧面气帘展开仿真[J].长安大学学报(自然科学版),2012,32(03):101.
 LI Heng-bin.Numerical simulation of automobile curtain airbag deployment based on ALE algorithm[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):101.
[4]袁 伟,付 锐,郭应时,等.基于马尔可夫链的驾驶人视觉转移特征[J].长安大学学报(自然科学版),2012,32(06):88.
 YUAN Wei,FU Rui,GUO Ying-shi,et al.Driver's visual transition characteristics based on the Markov chain[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):88.
[5]刘东辉,吴初娜.基于霍尔传感器的制动踏板行程测量系统设计[J].长安大学学报(自然科学版),2012,32(02):106.
 LIU Dong-hui,WU Chu-na.Design of brake pedal displacement measuring system based on Hall sensor[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):106.
[6]赵 伟,张春化,佟娟娟,等.EGR对甲醇HCCI发动机燃烧与排放的影响[J].长安大学学报(自然科学版),2012,32(04):88.
 ZHAO Wei,ZHANG Chun-hua,TONG Juan-juan,et al.Effect of EGR on combustion and emission of methanol HCCI engine[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):88.
[7]金 涛,马 静,王苑超,等.一种新型分布式汽车多检测线系统体系结构[J].长安大学学报(自然科学版),2012,32(04):93.
 JIN Tao,MA Jing,WANG Yuan-chao,et al.A new distributed multi-inspection controlling system architecture for vehicle[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):93.
[8]袁华智,朱 铭,李阳阳,等.柴油机生物柴油-甲醇混合燃料燃烧与排放特性[J].长安大学学报(自然科学版),2012,32(05):97.
 YUAN Hua-zhi,ZHU Ming,LI Yang-yang,et al.Combustion and emission characteristics of blended fuel of biodiesel and methanol for diesel engine[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):97.
[9]吴 晗,张春化,佟娟娟,等.EGR对甲醇HCCI发动机性能和运行范围的影响[J].长安大学学报(自然科学版),2012,32(05):102.
 WU Han,ZHANG Chun-hua,TONG Juan-juan,et al.Effect of EGR on performance and operation range of methanol HCCI engine[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):102.
[10]梁晓娟,李西秦,黎 苏,等.定容燃烧过程中苯与芳香烃排放规律[J].长安大学学报(自然科学版),2012,32(05):107.
 LIANG Xiao-juan,LI Xi-qin,LI Su,et al.Emissions of benzene & polycyclic aromatic hydrocarbons in constant volume combustion process[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):107.

备注/Memo

备注/Memo:
收稿日期:2024-01-28
基金项目:国家自然科学基金项目(52172361); 榆林市科技计划项目(CXY-2020-021); 中央高校基本科研业务费专项资金项目(300102222201)
作者简介:史培龙(1984-),男,陕西榆林人,副教授,工学博士,E-mail:peilongshi@chd.edu.cn。
更新日期/Last Update: 2024-07-10