[1]李崑,钱谦.基于黏菌优化算法的机械传动行星轮系多目标优化设计[J].长安大学学报(自然科学版),2024,44(4):149-160.[doi:10.19721/j.cnki.1671-8879.2024.04.014]
 LI Kun,QIAN Qian.Multi-objective optimization design of mechanical transmission planetary gear train based on slime mold optimization algorithm[J].Journal of Chang’an University (Natural Science Edition),2024,44(4):149-160.[doi:10.19721/j.cnki.1671-8879.2024.04.014]
点击复制

基于黏菌优化算法的机械传动行星轮系多目标优化设计()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第44卷
期数:
2024年4期
页码:
149-160
栏目:
机械与汽车工程
出版日期:
2024-07-10

文章信息/Info

Title:
Multi-objective optimization design of mechanical transmission planetary gear train based on slime mold optimization algorithm
文章编号:
1671-8879(2024)04-0149-12
作者:
李崑12钱谦12
(1. 昆明理工大学 信息工程与自动化学院,云南 昆明 650500; 2. 昆明理工大学 云南省计算机技术应用重点实验室,云南 昆明 650500)
Author(s):
LI Kun12 QIAN Qian12
(1. School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, Yunnan, China; 2. Yunnan Key Laboratory of Computer Technology Applications, Kunming University of Science and Technology, Kunming 650500, Yunnan, China)
关键词:
机械工程 行星轮系 黏菌优化算法 函数优化 工程优化 加权聚合学习
Keywords:
mechanical engineering planetary gear system slime mould algorithm function optimization engineering optimization weighted aggregation learning
分类号:
U463.21
DOI:
10.19721/j.cnki.1671-8879.2024.04.014
文献标志码:
A
摘要:
为了优化机械传动中的关键部件行星轮系设计模型,提出改进的黏菌优化算法。该算法通过加权聚合学习机制,使黏菌个体在搜索空间中能够更好地学习和利用其他个体的优秀信息,从而提高收敛速度和优化精度。将行星轮系的传动比、齿轮齿数、模数等关键参数作为优化变量,以变量之间所满足的关系为约束条件,以传动效率、体积、噪音等性能指标作为优化目标。通过构建合适的适应度函数,将行星轮系设计模型优化问题转化为一个多目标优化问题,并将该算法与9个对比算法在函数测试集和行星轮设计模型上进行试验验证。研究结果表明:基于加权聚合学习机制的黏菌优化算法进行行星轮系设计优化效果显著,具有收敛速度快、优化精度高、稳定性好等优点,不仅能够在较短时间内找到全局最优解,而且能够提供更加稳定和可靠的优化结果。
Abstract:
Amid at crucial component in mechanical transmission in mechanical transmission, a planetary gear system design optimizationmodel based on improved slime mold optimization algorithm was proposed. The weighted aggregation learning mechanismwas introduced, the algorithm enables slime mold individuals to better learn andutilize excellent information from other individuals in the search space, therebyaccelerating convergence speed and improving optimization accuracy. Key parameterssuch as transmission ratio, gear tooth number, and modulus of planetary gear systemswas used as optimization variables, and the relationship between variables was taken as constraint conditions, and performance indicators such as transmissionefficiency, volume, and noise was used as optimization objectives. By constructingappropriate fitness functions, the planetary gear train design optimization problemwas transformed into a multi-objective optimization problem. And experimentalverification on the function test set and planetary gear design through 9comparative algorithms was conducted. The results show that the slime moldoptimization algorithm based on the weighted aggregation learning mechanismachieves significant effects in planetary gear train design optimization. Comparedwith traditional optimization algorithms, this algorithm can not only find the globaloptimal solution in a shorter time but also provide more stable and reliableoptimization results. The proposed algorithm provides a novel solution for the designoptimization problem of planetary gear trains, and have advantages in fastconvergence speed, high optimization accuracy and good stability.6 tabs, 5 figs, 19 refs.

参考文献/References:

[1] LI S,CHEN H,WANG M,et al.Slime mould algorithm:A new method for stochastic optimization[J].Future generation computer systems,2020,111:300-323.
[2]NAIK M K,PANDA R,ABRAHAM A.Adaptive opposition slime mould algorithm[J].Soft computing,2021,25(22):14297-14313.
[3]LIU Y,HEIDARI A A,YE X,et al.Boosting slime mould algorithm for parameteridentification of photovoltaic models[J].Energy,2021,234:121164.
[4]RIZK-ALLAH R M,HASSANIEN A E,SONG D.Chaos-opposition-enhanced slime mould algorithm for minimizing the cost of energy for the wind turbines onhigh-altitude sites[J].ISA transactions,2022,121:191-205.
[5]ZHAO S,WANG P,HEIDARI A A,et al.Multilevel threshold image segmentationwith diffusion association slime mould algorithm and Renyi’s entropy forchronic obstructive pulmonary disease[J].Computers in Biology and Medicine,2021,134:104427.
[6]HU J,GUI W,HEIDARI A A,et al.Dispersed foraging slime mould algorithm:Continuous and binary variants for global optimization and wrapper-basedfeature selection[J].Knowledge-Based Systems,2022,237:107761.
[7]贾鹤鸣,刘宇翔,刘庆鑫,等.融合随机反向学习的黏菌与算术混合优化算法[J].计算机科学与探索,2022,16(5):1182-1192.
JIA He-ming,LIU Yu-xiang,LIU Qing-xin,et al.Hybrid algorithm of slime mould algorithm and arithmetic optimization algorithm based on random opposition-based learning[J].Journal of Frontiers of Computer Science and Technology,2022,16(5):1182-1192.
[8]ABUALIGAH L,DIABAT A,MIRJALILI S,et al.The arithmetic optimization algorithm[J].Computer Methods in Applied Mechanics and Engineering,2021,376:113609.
[9]卢万杰,陈子林,付 华,等.多策略融合的改进黏菌算法及其应用[J].智能系统学报,2023,18(5):1060-1069.
LU Wan-jie,CHEN Zi-lin,FU Hua,et al.Improved slime mould algorithm with multistrategy integration and its application[J].CAAI Transactions on Intelligent Systems,2023,18(5):1060-1069.
[10]黄 鹤,高永博,茹 锋,等.基于自适应黏菌算法优化的无人机三维路径规划[J].上海交通大学学报,2023,57(10):1282-1291.
HUANG He,GAO Yong-bo,RU Feng,et al.3D path planning of UAV based on adaptive slime mould algorithm optimization[J].Journal of Shanghai Jiao Tong University,2023,57(10):1282-1291.
[11]翟卫欣,潘家文,兰玉彬,等.基于多元振荡黏菌算法的田路分割模型参数优化方法[J].农业工程学报,2022,38(18):176-183.
ZHAI Wei-xin,PAN Jia-wen,LAN Yu-bin,et al.Parameter optimization of field-road trajectory segmentation model using multiplex oscillation slime mould algorithm[J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(18):176-183.
[12]谢国民,林忠宝.多策略改进黏菌算法阶段优化HSVM变压器故障辨识[J].电子测量与仪器学报,2024,38(3):67-76.
XIE Guo-min,LIN Zhong-bao.ISMA algorithm stage optimization for HSVM transformer fault identification[J].Journal of Electronic Measurement and Instrumentation,2024,38(3):67-76.
[13]ABDERAZEK H,SAIT S M,YILDIZ A R.Optimal design of planetary geartrain for automotive transmissions using advanced meta-heuristics[J].International Journal of Vehicle Design,2019,80(2/3/4):121-136.
[14]QIAN Q,DENG Y,SUN H,et al..Enhanced beetle antennae search algorithmfor complex and unbiased optimization[J].Soft Computing,2022,26(19):10331-10369.
[15]WU G,MALLIPEDDI R,SUGANTHAN P N.Problem definitions and evaluation criteriafor the CEC 2017 competition on constrained real-parameter optimization[R].National University of Defense Technology,and Kyungpook National University,and NanyangTechnological University,2017.
[16]SUN K,JIA H,LI Y,et al.Hybrid improved slime mould algorithm with adaptiveβ hill climbing for numerical optimization[J].Journal of Intelligent & FuzzySystems,2021,40(1):1667-1679.
[17]HADI A A,MOHAMED A W,JAMBI K M.Single-objective real-parameteroptimization:Enhanced LSHADE-SPACMA algorithm[J].Heuristics foroptimization and learning,2021(906):103-121.
[18]MOHAMED A W,HADI A A,MOHAMED A K,et al.Evaluating the performance of adaptive gainingsharing knowledge based algorithm on CEC 2020 benchmarkproblems[C]//IEEE.Proceedings of 2020 IEEE congress on evolutionary computation(CEC).New York:IEEE,2020:1-8.
[19]MOHAMED A W,HADI A A,JAMBI K M.Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization[J].Swarmand Evolutionary Computation,2019,50:100455.

相似文献/References:

[1]罗文军,罗天洪,甘信富,等.基于模糊-PI控制的沥青混凝土摊铺机行驶系统仿真[J].长安大学学报(自然科学版),2012,32(01):0.
[2]刘清涛,蔡宗琰,刘晓婷,等.面向工艺路线的废旧零部件可再制造性评价[J].长安大学学报(自然科学版),2012,32(03):105.
 LIU Qing-tao,CAI Zong-yan,LIU Xiao-ting,et al.Assessment on remanufacturability of waste parts for process route[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):105.
[3]林 涛,刘 学,董忠红,等.大差速比平地机离合器接合过程[J].长安大学学报(自然科学版),2012,32(06):100.
 LIN Tao,LIU Xue,DONG Zhong-hong,et al.Engagement process of motor graders big differential speed ratio clutch[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):100.
[4]刘 钊,焦生杰.工程机械用发动机动力性能评价指标[J].长安大学学报(自然科学版),2012,32(06):106.
 LIU Zhao,JIAO Sheng-jie.Evaluation criterion of engine power properties for construction machinery[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):106.
[5]孟彩茹,李 磊,赵 真,等.沥青搅拌设备振动筛筛箱的动态特性分析[J].长安大学学报(自然科学版),2012,32(02):101.
 MENG Cai-ru,LI Lei,ZHAO Zhen,et al.Dynamic performance analysis of vibrating screen box in asphalt mixer[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):101.
[6]侯劲汝,沈建军,徐 倩.双钢轮振动压路机振幅不均匀性的分析[J].长安大学学报(自然科学版),2010,30(01):100.
 HOU Jing-ru,SHEN Jian-jun,XU Qian.Analysis on uneven amplitude of tandem vibratory roller[J].Journal of Chang’an University (Natural Science Edition),2010,30(4):100.
[7]赵铁栓,焦生杰,叶 敏.振动压路机无级调幅H_2/H_∞控制[J].长安大学学报(自然科学版),2010,30(03):87.
 ZHAO Tie-shuan,JIAO Sheng-gjie,YE Min.H2/H∞ control for stepless amplitude modulation of vibratory roller[J].Journal of Chang’an University (Natural Science Edition),2010,30(4):87.
[8]焦生杰,卡玛尔,林 涛,等.H型液压滤波器的合理应用[J].长安大学学报(自然科学版),2010,30(04):97.
 JIAO Sheng-jie,KAMAL Washahi,LIN Tao,et al.Reasonable application on H type hydraulic filter[J].Journal of Chang’an University (Natural Science Edition),2010,30(4):97.
[9]夏毅敏,薛 静,周喜温.软岩切削过程的三维数值模拟[J].长安大学学报(自然科学版),2010,30(04):102.
 XIA Yi-min,XUE Jing,ZHOU Xi-wen.3-D dimensional numerical simulation of soft rock cutting process[J].Journal of Chang’an University (Natural Science Edition),2010,30(4):102.
[10]顾海荣,焦生杰,肖翀宇,等.全液压路面铣刨机铣刨系统动力学仿真[J].长安大学学报(自然科学版),2010,30(05):103.
 GU Hai-rong,JIAO Sheng-jie,XIAO Chong-yu,et al.Dynamics simulation of milling system used in hydraulic milling machine[J].Journal of Chang’an University (Natural Science Edition),2010,30(4):103.

备注/Memo

备注/Memo:
收稿日期:2024-01-25
基金项目:云南省基础研究计划项目(202101AT070082),云南省计算机技术应用重点实验室开放基金项目
作者简介:李 崑(1981-),男,北京市人,工学硕士,E-mail:qianqian_yn@126.com。
通讯作者:钱 谦(1981-),男,云南安宁人,副教授,工学博士,E-mail:qianqian_yn@126.com。
更新日期/Last Update: 2024-07-10