[1]程国柱,李金禹,陈永胜,等.高速公路异构交通流HDV建模及其特征[J].长安大学学报(自然科学版),2024,44(4):97-107.[doi:10.19721/j.cnki.1671-8879.2024.04.009]
 CHENG Guo-zhu,LI Jin-yu,CHEN Yong-sheng,et al.Modeling of human-driven vehicles and characteristics of heterogeneous traffic flow for freeway[J].Journal of Chang’an University (Natural Science Edition),2024,44(4):97-107.[doi:10.19721/j.cnki.1671-8879.2024.04.009]
点击复制

高速公路异构交通流HDV建模及其特征()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第44卷
期数:
2024年4期
页码:
97-107
栏目:
交通工程
出版日期:
2024-07-10

文章信息/Info

Title:
Modeling of human-driven vehicles and characteristics of heterogeneous traffic flow for freeway
文章编号:
1671-8879(2024)04-0097-11
作者:
程国柱1李金禹1陈永胜1徐亮2
(1. 东北林业大学 土木与交通学院,黑龙江 哈尔滨 150040; 2. 长春工程学院 土木工程学院,长春 吉林 130012)
Author(s):
CHENG Guo-zhu1 LI Jin-yu1 CHEN Yong-sheng1 XU Liang2
(1. School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040,Heilongjiang, China; 2. School of Civil Engineering, Changchun Institute of Technology, Changchun 130012, Jilin, China)
关键词:
交通工程 异构交通流 跟驰模型 换道模型 交通流特征
Keywords:
traffic engineering heterogeneous traffic flow car-following model lane changing model traffic flow characteristic
分类号:
U491.1
DOI:
10.19721/j.cnki.1671-8879.2024.04.009
文献标志码:
A
摘要:
为了更好地模拟高速公路中网联自动驾驶车辆(connected and autonomous vehicles,CAV)与人工驾驶车辆(human-driven vehicles,HDV)组成的异构交通流,开展高速公路异构交通流跟驰与换道行为研究。首先,以NGSIM轨迹数据集为基础分析HDV的微观交通特性,根据驾驶人在相同车头时距条件下的加、减速策略,将驾驶人分为保守型、普通型和激进型3类。其次,从驾驶人感知判断结果存在不确定性的角度,结合车辆跟驰数据分析不同类型驾驶人车头时距和速度判断误差的特性,同时引入信息效用理论模拟驾驶人对CAV认知程度的变化及其对驾驶决策的影响,在智能驾驶人模型(intelligent driver model,IDM)和对称双车道元胞自动机换道模型的基础上,提出一种改进的HDV跟驰与换道模型。最后,将改进模型与IDM模型预测结果进行对比分析,并通过MATLAB对高速公路异构交通流特征进行仿真分析。研究结果表明:改进模型能够更准确地模拟车辆跟驰行为,相比于IDM模型,保守型HDV跟驰模型平均绝对误差MAE降低24.7%,均方误差MSE降低11.9%,皮尔逊相关系数PCCs提高2.6%; 普通型HDV跟驰模型MAE降低45.6%,MSE降低38.6%,PCCs提高4.0%; 激进型HDV跟驰模型MAE降低41.2%,MSE降低45.9%,PCCs提高0.4%; 在接近自由流状态下,HDV在车流中的占比对异构交通流的速度、流量和稳定性等特征影响较小,随着密度的增大HDV占比对交通流的影响也随之增大,直到达到临界密度,车辆组成对交通流的影响开始减小; 在相同交通流密度下,HDV在车辆组成中的占比与交通流的速度、流量和稳定性呈负相关性。模型丰富了对异构交通流HDV跟驰与换道行为的研究,在高速公路HDV和CAV混行的异构交通流的交通管理和基础设施设计等方面具有一定参考价值。
Abstract:
In order to better simulate the heterogeneous traffic flow consisting of connected and autonomous vehicles(CAVs)and human-driven vehicles(HDVs)on highways, research on the car-following and lane-changing behaviors of heterogeneous traffic flow on highways was conducted. Firstly, based on the NGSIM trajectory dataset, the micro-level traffic characteristics of human-driven vehicles were analyzed. According to the acceleration and deceleration strategies of drivers under the same headway conditions, they were classified into three types, conservative, moderate, and aggressive drivers. Next, considering the uncertainty in drivers' perception and judgment, along with the analysis of the characteristics of the judgment errors in headway and speed by drivers with different driving styles based on vehicle following data, and simultaneously incorporating the information utility theory to simulate the changes in drivers' perception of CAVs and their impact on driving decisions, an improved HDV following and lane-changing model was proposed on the basis of the intelligent driver model(IDM)and STCA lane-changing model. Finally, the improved model was compared and analyzed against the predictive results of the IDM model, and simulation analyses of the characteristics of heterogeneous traffic flow on highways were conducted using MATLAB. The results show that significant improvements in accuracy are observed with the improved model, a reduction in the mean absolute error MAE by 24.7%, in the mean squared error MSE by 11.9%, and an increase in the Pearson correlation coefficient PCCs by 2.6% for the conservative HDV following model. For the normal type, decreases in MAE by 45.6% and in MSE by 38.6%, with an increase in PCCs by 4.0%, are documented. The aggressive type exhibits decreases in MAE by 41.2%, in MSE by 45.9%, and a marginal increase in PCCs by 0.4%, indicating a more accurate simulation of vehicle following behavior by the improved HDV model. The proportion of HDVs in traffic has a minimal impact on speed, flow, and stability under near-free flow conditions. However, as density increases, the impact of HDV proportion also grows, reaching a peak at a critical density, after which the influence of vehicle composition on traffic flow decreases. At the same traffic flow density, a negative correlation is found between the proportion of HDVs and the speed, flow, and stability of the traffic stream. The research on heterogeneous traffic flow, particularly focusing on HDV car-following and lane-changing behaviors is enriched by the model. This holds significant reference value for traffic management and infrastructure design in scenarios involving the coexistence of HDVs and CAVs on freeways.3 tabs, 14 figs, 17 refs.

参考文献/References:

[1] ZHU W X,ZHANG H M.Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model[J].Physica A:Statistical Mechanics and Its Applications,2018,496:274-285.
[2]ZHENG Y,WANG J W,LI K Q.Smoothing traffic flow via control of autonomous vehicles[J].IEEE Internet of Things Journal,2020,7(5):3882-3896.
[3]ZHOU Y J,ZHU H B,GUO M M,et al.Impact of CACC vehicles' cooperative driving strategy on mixed four-lane highway traffic flow[J].Physica A:Statistical Mechanics and Its Applications,2019,540:122721.
[4]LIU H,KAN X,SHLADOVER S E,et al.Impact of cooperative adaptive cruise control on multilane freeway merge capacity[J].Journal of Intelligent Transportation Systems,2018,22(3):263-275.
[5]蒋阳升,胡 蓉,姚志洪,等.智能网联车环境下异质交通流稳定性及安全性分析[J].北京交通大学学报,2020,44(1):27-33.
JIANG Yang-sheng,HU Rong,YAO Zhi-hong,et al.Stability and safety analysis for heterogeneous traffic flow composed of intelligent and connected vehicles[J].Journal of Beijing Jiaotong University,2020,44(1):27-33.
[6]曲大义,黑凯先,郭海兵,等.车联网环境下车辆换道博弈行为及模型[J].吉林大学学报(工学版),2022,52(1):101-109.
QU Da-yi,HEI Kai-xian,GUO Hai-bing,et al.Game behavior and model of lane-changing on the Internet of vehicles environment[J].Journal of Jilin University(Engineering and Technology Edition),2022,52(1):101-109.
[7]赵树恩,柯 涛,柳 平.基于贝叶斯网络的车辆换道决策模型研究[J].重庆交通大学学报(自然科学版),2020,39(5):130-137,144.
ZHAO Shu-en,KE Tao,LIU Ping.Decision model of vehicle lane change based on Bayesian network[J].Journal of Chongqing Jiaotong University(Natural Science),2020,39(5):130-137,144.
[8]宗 芳,王 猛,曾 梦,等.考虑多前车作用势的混行交通流车辆跟驰模型[J].交通运输工程学报,2022,22(1):250-262.
ZONG Fang,WANG Meng,ZENG Meng,et al.Vehicle-following model in mixed traffic flow considering interaction potential of multiple front vehicles[J].Journal of Traffic and Transportation Engineering,2022,22(1):250-262.
[9]周 娟,贺玉龙,田静静.基于NGSIM轨迹数据的车辆行驶速度特性分析[J].交通科技与经济,2019,21(3):45-48,61.
ZHOU Juan,HE Yu-long,TIAN Jing-jing.Speed characteristic analysis based on NGSIM trajectory data[J].Technology & Economy in Areas of Communications,2019,21(3):45-48,61.
[10]顾海燕.车联网环境下高速公路车辆跟驰模型及仿真研究[D].南京:东南大学,2017.
GU Hai-yan.Research on freeway car-following modeling and simulation in connected vehicle environment[D].Nanjing:Southeast University,2017.
[11]刘怿轩,张慧永,王 猛,等.跟驰自动驾驶车时人驾车行为研究:实证与建模[J].交通运输工程与信息学报,2023,21(2):14-28.
LIU Yi-xuan,ZHANG Hui-yong,WANG Meng,et al.Analyzing human driving behavior when following autonomous vehicles:Real vehicle testing and modeling[J].Journal of Transportation Engineering and Information,2023,21(2):14-28.
[12]秦严严,杨金滢,李淑庆.考虑可变车头时距的智能网联车跟驰模型[J].江苏大学学报(自然科学版),2022,43(4):381-385.
QIN Yan-yan,YANG Jin-ying,LI Shu-qing.Car-following model of intelligent and connected vehicle considering variable headway[J].Journal of Jiangsu University(Natural Science Edition),2022,43(4):381-385.
[13]ZHANG J J,SUN Z T,YU H Y,et al.Modeling and simulation of traffic flow considering driver perception error effect[J].Journal of Transportation Engineering,Part A:Systems,2021,147(4):04021009.
[14]MIDDLETON E.Some testable implications of a preference for subjective novelty[J].Kyklos,1986,39:397-418.
[15]TREIBER M,HENNECKE A,HELBING D.Congested traffic states in empirical observations and microscopic simulations[J].Physical Review E:Statistical Physics,Plasmas,Fluids,and Related Interdisciplinary Topics,2000,62(2):1805-1824.
[16]RICKERT M,NAGEL K,SCHRECKENBERG M,et al.Two lane traffic simulations using cellular automata[J].Physica A:Statistical Mechanics and Its Applications,1996,231(4):534-550.
[17]LIU Y,GUO J Q,TAPLIN J,et al.Characteristic analysis of mixed traffic flow of regular and autonomous vehicles using cellular automata[J].Journal of Advanced Transportation,2017,2017:8142074.

相似文献/References:

[1]王建伟,李娉,高洁,等.中国交通运输碳减排区域划分[J].长安大学学报(自然科学版),2012,32(01):0.
[2]李曙光,周庆华.具有破坏排队的离散时间动态网络装载算法[J].长安大学学报(自然科学版),2012,32(01):0.
[3]凌海兰,郗恩崇.基于随机波动条件的公交客运量预测模型[J].长安大学学报(自然科学版),2012,32(01):0.
[4]田娥,肖庆,陆小佳,等.安全驾驶的横向安全预警报警阈值的确定[J].长安大学学报(自然科学版),2012,32(01):0.
[5]侯贻栋,赵炜华,魏 朗,等.驾驶人空间距离判识规律心理学分析[J].长安大学学报(自然科学版),2012,32(03):86.
 HOU Yi-dong,ZHAO Wei-hua,WEI Lang,et al.Analysis on psychology in cognitive distance about drivers[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):86.
[6]赵跃峰,张生瑞,魏 华.隧道群路段运行速度特性分析[J].长安大学学报(自然科学版),2012,32(06):67.
 ZHAO Yue-feng,ZHANG Sheng-rui,WEI hua.Operating speed characteristics of tunnel group section[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):67.
[7]林 杉,许宏科,刘占文.一种高速公路隧道交通流元胞自动机模型[J].长安大学学报(自然科学版),2012,32(06):73.
 LIN Shan,XU Hong-ke,LIU Zhan-wen.One cellular automaton traffic flow model for expressway tunnel[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):73.
[8]刘俊德,徐 兵,梁永东,等.交通事故下高速公路行车安全评估[J].长安大学学报(自然科学版),2012,32(06):78.
 LIU Jun-de,XU bing,LIANG Yong-dong,et al.Traffic safety assessment of expressway in the accident[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):78.
[9]芮海田,吴群琪,赵跃峰,等.公路建设对区域经济发展的影响分析——以陕西省为例[J].长安大学学报(自然科学版),2012,32(06):83.
 RUI Hai-tian,WU Qun-qi,ZHAO Yue-feng,et al.Influence of highway construction on regional economy development——taking Shaanxi as an example[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):83.
[10]彭 辉,续宗芳,韩永启,等.城市群城际运输结构配置客流分担率模型[J].长安大学学报(自然科学版),2012,32(02):91.
 PENG Hui,XU Zong-fang,HAN Yong-qi,et al.Sharing ratios model of passenger flows in intercity transportation structure configuration among urban agglomeration[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):91.

备注/Memo

备注/Memo:
收稿日期:2023-12-07
基金项目:国家自然科学基金项目(52378433); 中央高校基本科研业务费专项资金项目(2572023CT21)
作者简介:程国柱(1977-),男,吉林长春人,教授,博士研究生导师,E-mail:guozhucheng@126.com。
更新日期/Last Update: 2024-07-10