[1]张明礼,周志雄,周凤玺,等.降雨对多年冻土区公路路基内部水热影响试验[J].长安大学学报(自然科学版),2024,44(4):38-47.[doi:10.19721/j.cnki.1671-8879.2024.04.004]
 ZHANG Ming-li,ZHOU Zhi-xiong,ZHOU Feng-xi,et al.Influence of rainfall on hydrothermal process within highway subgrade in permafrost regions[J].Journal of Chang’an University (Natural Science Edition),2024,44(4):38-47.[doi:10.19721/j.cnki.1671-8879.2024.04.004]
点击复制

降雨对多年冻土区公路路基内部水热影响试验()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第44卷
期数:
2024年4期
页码:
38-47
栏目:
道路工程
出版日期:
2024-07-10

文章信息/Info

Title:
Influence of rainfall on hydrothermal process within highway subgrade in permafrost regions
文章编号:
1671-8879(2024)04-0038-10
作者:
张明礼12周志雄1周凤玺12雷兵兵1马安静1
(1. 兰州理工大学 土木工程学院,甘肃 兰州 730050; 2. 兰州理工大学 西部土木工程防灾减灾教育部工程研究中心,甘肃 兰州 730050)
Author(s):
ZHANG Ming-li12 ZHOU Zhi-xiong1 ZHOU Feng-xi12 LEI Bing-bing1 MA An-jing1
(1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China; 2. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, Gansu, China)
关键词:
道路工程 多年冻土区 室内试验 水热变化 降雨 路基 温度
Keywords:
road engineering permafrost regions laboratory test hydrothermal change rainfall subgrade temperature
分类号:
U419.92
DOI:
10.19721/j.cnki.1671-8879.2024.04.004
文献标志码:
A
摘要:
为了明确降雨对多年冻土区公路路基内部水热状态的影响,以青藏高原北麓河地区的环境特点和多年冻土路基结构为背景,在室内底板-大气双控温模型箱内制作冻土路基的几何相似比(1:6)模型。 首先通过无降雨和有降雨工况对比试验明确2种工况下多年冻土区路面温度及热通量的变化特征,然后进一步探究2种工况下路基内部水分场及其温度场的变化特征,进而明确多年冻土区公路路基内部水热状态对降雨作用的响应情况。研究结果表明:降雨作用下路面温度普遍低于无降雨时的路面温度,且路面及路肩下部5 cm处热通量呈减小趋势,路面下部热通量减小相对更加明显,约为路肩下部热通量减小量的3倍,表明降雨作用缓解路基内部热量吸收; 降雨会显著增加路基不同部位的浅层含水量,降低路基浅层温度,且夏季较多降雨量导致冻土路基释放出更多的热量,路基温度降低明显; 降雨作用对路基不同部位下部含水量和温度的影响随着深度增加逐渐减弱,对路基下部50 cm及以下位置的含水量和温度基本没影响; 相比路基其他部位,降雨作用导致天然场地含水量增加明显,而路面下部含水量增加较小; 虽然路面下部含水量增加较小,但沥青路面吸收的热量较多导致自身温度较高,因此降雨作为能量冷脉冲作用在路面时会导致路面下部温度相比路基其他部位降低更加显著,并且7月路面下部5 cm处温度降低最为明显,最大降温达2.4 ℃。
Abstract:
In order to clarify the impact of rainfall on the hydrothermal state within the highway subgrade in permafrost regions, a geometric similarity ratio model(1:6)of frozen subgrade was created in a baseplate-atmosphere dual-temperature control model box, based on the environmental characteristics of the Beiluhe area of the Qinghai-Xizang Plateau and the structure of frozen subgrade. First,through a comparative experiment between no rainfall and rainfall conditions, the variation characteristics of temperature and heat flux on the pavement in permafrost regions were clarified. Then, the variation characteristics of the water field and its temperature field within the highway subgrade were further explored under both conditions, and the response of the hydrothermal state within the highway subgrade in permafrost regions to rainfall was clarified. The results showthat the pavement temperature under rainfall is generally lower than that without rainfall, the heat flux at 5 cm ofthe pavement and shoulder shows a decreasing trend, and the heat flux of the pavement decreases more obviously, aboutthree times the decrease in heat flux at 5 cm of the shoulder, indicating that rainfall alleviates the heat absorption withinthe subgrade. In addition, rainfall significantly increases the shallow water content and reduces the shallow temperatureof different positions of the subgrade. Moreover, more rainfall in summer leads to more heat to be released frompermafrost subgrade, and the temperature of the subgrade decreases more obviously. However, the influence of rainfallon the water content and temperature at different depths of the subgrade gradually weakens with the increase of depth,and has little influence on the water content and temperature at 50 cm and below part of different positions of thesubgrade. In addition, compared with other positions of the subgrade, the increase of water content in the lower part ofthe natural site caused by rainfall is more obvious, while the increase of water content in the lower part of the pavementis relatively small. Although the water content in the lower part of the pavement increases less than other positions ofthe subgrade, the asphalt pavement absorbs more heat and leads to a higher temperature. Therefore, rainfall acting as anenergy cold pulse on the pavement can lead to a more significant temperature reduction. And the temperature at 5 cmbelow the pavement decreases most significantly in July, with a maximum temperature drop of 2.4 ℃.1 tab, 8 figs, 38 refs.

参考文献/References:

[1] ZHANG T J.Influence of the seasonal snow cover on the ground thermal regime:An overview[J].Reviews of Geophysics,2005,43(4):1-23.
[2]张廷军.全球多年冻土与气候变化研究进展[J].第四纪研究,2012,32(1):27-38.
ZHANG Ting-jun.Progress in global permafrost and climate change studies[J].Quaternary Sciences,2012,32(1):27-38.
[3]李晓英,姚正毅,肖建华,等.1961~2010年青藏高原降水时空变化特征分析[J].冰川冻土,2016,38(5):1233-1240.
LI Xiao-ying,YAO Zheng-yi,XIAO Jian-hua,et al.Analysis of the spatial-temporal variation characteristics of precipitation over the TibetanPlateau from 1961 through 2010[J].Journal of Glaciology and Geocryology,2016,38(5):1233-1240.
[4]汪双杰,金 龙,穆 柯,等.高原冻土区公路路基病害及工程对策[J].中国工程科学,2017,19(6):140-146.
WANG Shuang-jie,JIN Long,MU Ke,et al.Distresses and countermeasures of highway subgrade in plateau permafrostregions[J].Strategic Study of CAE,2017,19(6):140-146.
[5]CEDERGREN H R.Drainage of highway and airfield pavements[M].New York:Wiley,1974.
[6]LI S Y,LAI Y M,PEI W S,et al.Moisture-temperature changes and freeze-thaw hazards on a canal in seasonally frozen regions[J].Natural Hazards,2014,72(2):287-308.
[7]KOKELJ S V,TUNNICLIFFE J,LACELLE D,et al.Increased precipitation drives mega slump development and destabilization ofice-rich permafrost Terrain,northwestern Canada[J].Global and Planetary Change,2015,129:56-68.
[8]ROMANOVSKY V E,DROZDOV D S,OBERMAN N G,et al.Thermal state of permafrost in Russia[J].Permafrost and PeriglacialProcesses,2010,21(2):136-155.
[9]李东庆,魏春玲,吴紫汪.边坡渗流对冻土地区路基稳定性的影响分析[J].兰州大学学报,2000,36(3):175-179.
LI Dong-qing,WEI Chun-ling,WU Zi-wang.Analysis of the influence of the slope see page on embankment stability[J].Journal of Lanzhou University,2000,36(3):175-179.
[10]段东明,沈宇鹏,张鲁新.暖季强降雨对多年冻土南界斜坡路基稳定性影响分析[J].工程地质学报,2008,16(2):250-254.
DUAN Dong-ming,SHEN Yu-peng,ZHANG Lu-xin.Stability analysis of Qinghai-Tibet Railway slope embankment in theevent of rainstorm at the southern boundary region of the permafrost zone[J].Journal of EngineeringGeology,2008,16(2):250-254.
[11]林维康.冻土路基边坡降雨入渗规律影响因素研究[D].成都:西南交通大学,2019.
LIN Wei-kang.Study on influencing factors of rainfall infiltration law of frozen soil subgrade slope[D].Chengdu:Southwest JiaotongUniversity,2019.
[12]LIU W B,YU W B,FORTIER R,et al.Thermal effect of rainwater infiltration into a replicated road embankment in a coldenvironmental chamber[J].Cold Regions Science and Technology,2019,159:47-57.
[13]韩风雷,邱凯驰,喻文兵,等.降雨对封闭块石层对流特征与水热状态的影响试验[J].中国公路学报,2023,36(3):156-164.
HAN Feng-lei,QIU Kai-chi,YU Wen-bing,et al.Experimental study on influence of rainfall on convective propertiesand hydrothermal state of closed block stone layer[J].China Journal of Highway andTransport,2023,36(3):156-164.
[14]WEN Z,ZHANG M L,MA W,et al.Thermal-moisture dynamics of embankments with asphalt pavement inpermafrost regions of central Tibetan Plateau[J].European Journal of Environmental and CivilEngineering,2015,19(4):387-399.
[15]张中琼,吴青柏,温 智,等.沥青路面冻土路基的水分积累过程分析[J].中国公路学报,2013,26(2):1-6,41.
ZHANG Zhong-qiong,WU Qing-bai,WEN Zhi,et al.Analysis of moisture accumulation process on frozen soil subgradeof asphalt pavement[J].China Journal of Highway and Transport,2013,26(2):1-6,41.
[16]ZHANG Z Q,WU Q B,GAO S R,et al.Response of the soil hydrothermal process to difference underlyingconditions in the Beiluhe permafrost region[J].Environmental Earth Sciences,2017,76(5):1-13.
[17]张明礼,温 智,董建华,等.降雨增加对多年冻土区铁路路基水热影响研究[J].岩石力学与工程学报,2017,36(10):2580-2590.
ZHANG Ming-li,WEN Zhi,DONG Jian-hua,et al.The influence of rainfall increasing on thermal-moisture dynamics ofrailway embankment in cold regions[J].Chinese Journal of Rock Mechanics andEngineering,2017,36(10):2580-2590.
[18]ZHANG M L,WEN Z,LI D S,et al.Impact process and mechanism of summertime rainfall onthermal-moisture regime of active layer in permafrost regions of central Qinghai-Tibet Plateau[J].Science of the Total Environment,2021,796:148970.
[19]ZHANG G F,NAN Z T,ZHAO L,et al.Qinghai-Tibet Plateau wetting reduces permafrost thermal responses toclimate warming[J].Earth and Planetary Science Letters,2021,562:116858.
[20]赖远明,张明义,李双洋.寒区工程理论与应用[M].北京:科学出版社,2009.
LAI Yuan-ming,ZHANG Ming-yi,LI Shuang-yang.Theory and application of cold regions engineering[M].Beijing:Science Press,2009.
[21]冯德刚,郝东苗,张明礼,等.填料类型对季节冻土区覆盖效应的影响[J].深圳大学学报(理工版),2022,39(1):59-66.
FENG De-gang,HAO Dong-miao,ZHANG Ming-li,et al.Influence of subgrade filling types on covering effect in seasonally frozen soil area[J].Journal of Shenzhen University(Science and Engineering),2022,39(1):59-66.
[22]张明礼,温 智,董建华,等.考虑降雨作用的多年冻土区不同地表土质活动层水热过程差异分析[J].岩土力学,2020,41(5):1549-1559.
ZHANG Ming-li,WEN Zhi,DONG Jian-hua,et al.Response of hydrothermal activity in different types of soil at ground surface to rainfall inpermafrost region[J].Rock and Soil Mechanics,2020,41(5):1549-1559.
[23]张明礼,温 智,薛 珂,等.降水对北麓河地区多年冻土活动层水热影响分析[J].干旱区资源与环境,2016,30(4):159-164.
ZHANG Ming-li,WEN Zhi,XUE Ke,et al.The effects of precipitation on thermal-moisture dynamics of active layer atBeiluhe permafrost region[J].Journal of Arid Land Resources and Environment,2016,30(4):159-164.
[24]王绍令,丁永建,赵 林,等.青藏高原局地因素对近地表层地温的影响[J].高原气象,2002,21(1):85-89.
WANG Shao-ling,DING Yong-jian,ZHAO Lin,et al.The influence of local factor on surface layer ground temperaturein qinghai-xizangplateau[J].Plateau Meteorology,2002,21(1):85-89.
[25]蔡汉成,金 兰,李 勇,等.降水对青藏高原风火山地区多年冻土的影响[J].铁道学报,2018,40(9):104-110.
CAI Han-cheng,JIN Lan,LI Yong,et al.Influence of precipitation on permafrost in Fenghuo Mountain region of TibetanPlateau[J].Journal of the China Railway Society,2018,40(9):104-110.
[26]徐洪亮,常 娟,郭林茂,等.青藏高原腹地多年冻土区活动层水热过程对气候变化的响应[J].高原气象,2021,40(2):229-243.
XU Hong-liang,CHANG Juan,GUO Lin-mao,et al.Response of thermal-moisture condition within active layer in thehinterland of the Qinghai-Xizang Plateau to climate change[J].Plateau Meteorology,2021,40(2):229-243.
[27]姚仰平,韦 彬,陈 含,等.锅盖效应的水汽循环规律研究[J].岩土力学,2021,42(6):1512-1518.
YAO Yang-ping,WEI Bin,CHEN Han,et al.Research on the law of water vapor circulation of the pot cover effect[J].Rock and SoilMechanics,2021,42(6):1512-1518.
[28]冯竞祥,赵 新,马健军.土壤机械阻力测定研究进展[J].农业工程,2013,3(2):1-4.
FENG Jing-xiang,ZHAO Xin,MA Jian-jun.Advance on measurement of soil mechanical resistance[J].AgriculturalEngineering,2013,3(2):1-4.
[29]SAITO H,SIMUNEK J,MOHANTY B P.Numerical analysis of coupled water,vapor,and heat transport in the vadose zone[J].Vadose Zone Journal,2006,5(2):784-800.
[30]秦晓同,崔 凯,青于蓝.水热耦合作用下季节冻土边坡降雨入渗规律及入渗机理[J].中国公路学报,2022,35(4):87-98.
QIN Xiao-tong,CUI Kai,QING Yu-lan.Study on rainfall infiltration law and mechanism of seasonal frozen soil slope under hydro thermal coupling effect[J].China Journal of Highway and Transport,2022,35(4):87-98.
[31]李德生,温 智,张明礼,等.降水对多年冻土活动层水热影响定量分析[J].干旱区资源与环境,2017,31(7):108-113.
LI De-sheng,WEN Zhi,ZHANG Ming-li,et al.The quantitative analysis of the hydro-thermal dynamic of permafrost active layer effected byprecipitation[J].Journal of Arid Land Resources and Environment,2017,31(7):108-113.
[32]ZHOU Z X,ZHOU F X,ZHANG M L,et al.Effect of increasing rainfall on the thermal-Moisture dynamics of permafrost active layer in the central Qinghai-Tibet Plateau[J].Journal of Mountain Science,2021,18(11):2929-2945.
[33]张明礼,温 智,薛 珂,等.道砟层对多年冻土区铁路路基水热影响监测与分析[J].铁道学报,2017,39(4):94-100.
ZHANG Ming-li,WEN Zhi,XUE Ke,et al.Monitoring and analysis of impact of ballast layer on thermal-moisture dynamics in railwaysubgrade in permafrost regions[J].Journal of the China Railway Society,2017,39(4):94-100.
[34]NEUMANN R B,MOORBERG C J,LUNDQUIST J D,et al.Warming effects of spring rainfall increase methane emissions fromthawing permafrost[J].Geophysical Research Letters,2019,46(3):1393-1401.
[35]ZHANG S,MEUREY C,CALVET J C.Identification of soil-cooling rains in southern France from soil temperature and soilmoisture observations[J].Atmospheric Chemistry and Physics,2019,19(7):5005-5020.
[36]张中琼,吴青柏,刘永智,等.沥青路面能量平衡特征分析[J].高原气象,2014,33(6):1705-1711.
ZHANG Zhong-qiong,WU Qing-bai,LIU Yong-zhi,et al.Analysis of energy balance characteristics on asphalt pavement[J].Plateau Meteorology,2014,33(6):1705-1711.
[37]赵 林,胡国杰,邹德富,等.青藏高原多年冻土变化对水文过程的影响[J].中国科学院院刊,2019,34(11):1233-1246.
ZHAO Lin,HU Guo-jie,ZOU De-fu,et al.Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J].Bulletin of Chinese Academy of Sciences,2019,34(11):1233-1246.
[38]冯晓莉,申红艳,李万志,等.1961~2017年青藏高原暖湿季节极端降水时空变化特征[J].高原气象,2020,39(4):694-705.
FENG Xiao-li,SHEN Hong-yan,LI Wan-zhi,et al.Spatiotemporal changes for extreme precipitation in wet season over the Qinghai-Tibetan and the surroundings during 1961 to 2017[J].Plateau Meteorology,2020,39(4):694-705.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):1.

备注/Memo

备注/Memo:
收稿日期:2023-10-20
基金项目:国家自然科学基金项目(41961010); 甘肃省教育厅研究生“创新之星”项目(2023CXZX-454); 中国科学院“西部青年学者”项目(23JR6KA027); 陇原青年创新创业人才项目(2023LQGR18)
作者简介:张明礼(1987-),男,陕西安康人,副教授,工学博士,E-mail:mingli_0919@126.com。
通讯作者:周凤玺(1979-),男,甘肃白银人,教授,工学博士,E-mail:geolut@163.com。
更新日期/Last Update: 2024-07-10