[1]何锐,柴华,安炬峰,等.粉煤灰微珠粒径及掺量对灌浆料性能的影响[J].长安大学学报(自然科学版),2024,44(4):15-26.[doi:10.19721/j.cnki.1671-8879.2024.04.002]
 HE Rui,CHAI Hua,AN Ju-feng,et al.Influence of particle size and dosing of fly ash microbeads on performance of grout[J].Journal of Chang’an University (Natural Science Edition),2024,44(4):15-26.[doi:10.19721/j.cnki.1671-8879.2024.04.002]
点击复制

粉煤灰微珠粒径及掺量对灌浆料性能的影响()
分享到:

长安大学学报(自然科学版)[ISSN:1006-6977/CN:61-1281/TN]

卷:
第44卷
期数:
2024年4期
页码:
15-26
栏目:
道路工程
出版日期:
2024-07-10

文章信息/Info

Title:
Influence of particle size and dosing of fly ash microbeads on performance of grout
文章编号:
1671-8879(2024)04-0015-12
作者:
何锐1柴华1安炬峰2李亮亮1王振军1杨水平3
(1. 长安大学 材料科学与工程学院,陕西 西安 710010; 2. 中交二公局第四工程有限公司,河南 洛阳 471000; 3. 甘肃省临夏公路事业发展中心双城公路段,甘肃 临夏 731800)
Author(s):
HE Rui1 CHAI Hua1 AN Ju-feng2 LI Liang-liang1 WANG Zhen-jun1 YANG Shui-ping3
(1. School of Materials Science and Engineering, Chang'an University, Xi'an 710010, Shannxi, China; 2. CCCC-SHB Fourth Engineering Co, Ltd., Luoyang 471000, Henan, China; 3. Gansu Province Linxia Highway Development Center Shuangcheng Highway Section, Linxia 731800, Gansu, China)
关键词:
道路工程 粉煤灰微珠 粒径 流动度 抗压强度 孔隙结构 水化热
Keywords:
road engineering fly ash microbead particle size flowability compressive strength pore structure hydration heat
分类号:
U414
DOI:
10.19721/j.cnki.1671-8879.2024.04.002
文献标志码:
A
摘要:
为了探究粉煤灰微珠粒径及掺量对灌浆料性能的影响,选取了4种不同粒径的粉煤灰微珠制备灌浆料试样,测试其流动度与抗压强度,并采用气孔结构分析仪、等温微量热仪与扫描电镜(SEM),分析灌浆料孔隙结构参数、水化放热特性与微观形貌的变化,探讨了粉煤灰微珠对灌浆料性能的影响机理。试验结果表明:小粒径(≤45 μm)的粉煤灰微珠有助于增加灌浆料的流动性和提升灌浆料的28 d强度,且当10 μm的微珠掺量(质量分数,下同)为10%时,28 d抗压强度最大; 粉煤灰微珠的掺加增大了灌浆料的总含气量,当10 μm的微珠掺量为5%时,可以细化并改善材料的孔结构; 随着粉煤灰微珠掺量的增加,水化放热量降低显著,且水化放热量随着粉煤灰微珠粒径的增大而降低; SEM微观分析显示小粒径的粉煤灰微珠表面生成了更多的水化产物。总体来看,掺入5%~10%小粒径的粉煤灰微珠,可以显著提升灌浆料工作性能和28 d抗压强度,且降低灌浆料的水化放热。
Abstract:
In order to investigate the influence of the particle size and dosage of fly ash microbeads on the performance of grout, four types of fly ash microbeads with different particle sizes were selected to prepare grout and test its fluidity and compressive strength. The pore structure analyzer, isothermal microcalorimeter and scanning electron microscope(SEM)were used to analyze the changes of pore structure parameters, hydration exothermic properties and microscopic morphology of the grout, and to explore the influence mechanism of fly ash microbeads on the performance of the grout. The results show that small particle size(≤45 μm)of the fly ash microbeads help to increase the fluidity of the grout and enhance the 28 d strength of the grout, and when 10 μm beads dosage(mass fraction, the same below)is 10%, the 28 d compressive strength is the largest. Fly ash microbeads doping increase the total air content of the grout, when 10 μm beads dosage is 5%, it can be refined and improve the pore structure of the material. With the increase of the dosage of fly ash microbeads, the decrease of the exothermic heat of hydration is more significant, and the exothermic heat of hydration decreases with the increase of the particle size of fly ash microbeads. SEM microanalysis shows that the surface of fly ash microbeads with small particle size generates more hydration products. Overall, the incorporation of 5% to 10% small particle size fly ash microbeads can significantly improve the working performance and 28 d compressive strength of the grout, and reduce the exothermic heat of hydration of the grout.4 tabs, 19 figs, 26 refs.

参考文献/References:

[1] 何 锐,王 铜,陈华鑫,等.青藏高原气候环境对混凝土强度和抗渗性的影响[J].中国公路学报,2020,33(7):29-41.
HE Rui,WANG Tong,CHEN Hua-xin,et al.Impact of Qinghai-Tibet Plateau's climate on strength and permeability of concrete[J].China Journal of Highway and Transport,2020,33(7):29-41.
[2]HE R,LI M,GAN V J L,et al.BIM-enabled computerized design and digital fabrication of industrialized buildings:A case study[J].Journal of Cleaner Production,2021,278(1):123505.
[3]何 锐,郭 健,胡元元,等.水泥基材料水分传输及数值模拟方法研究进展[J].长安大学学报(自然科学版),2023,43(6):1-12.
HE Rui,GUO Jian,HU Yuan-yuan,et al.Research progress on moisture transport and numerical simulation methods of cement-based materials[J].Journal of Chang'an University(Natural Science Edition),2023,43(6):1-12.
[4]陈宇亮,曾 辉,李婷玉,等.偏高岭土、粉煤灰和矿渣地聚合物注浆材料研制与应用[J].公路工程,2021,46(6):142-147.
CHEN Yu-liang,ZENG Hui,LI Ting-yu,et al.Development and application of metakaolin,fly ash and slag geopolymer grouting material[J].Highway Engineering,2021,46(6):142-147.
[5]LIU S,LI Z F,YUE T,et al.A dynamic simulation study on the sustainability of prefabricated buildings[J].Sustainable Cities and Society,2022,77(2):103551.
[6]李伟民.我国装配式建筑发展关键影响因素研究[D].南京:东南大学,2020.
LI Wei-min.Exploring key influence factors on the development of prefabricated buildings in China[D].Nanjing:Southeast University,2020.
[7]NAVID R,KUENZEL C.Cenospheres:A review[J].Fuel,2017,207(11):1-12.
[8]DANISH A,ALI MOSABERPANAH M.Formation mechanism and applications of cenospheres:A review[J].Journal of Materials Science,2020,55(11):4539-4557.
[9]ASAD H,PARTHASARATHY P,MA H Y,et al.Properties improvement of fly ash cenosphere modified cement pastes using nano silica[J].Cement and Concrete Composites,2017,81(8):35-48.
[10]CHINDAPRASIRT P,JATURAPITAKKUL C,SINSIRI T.Effect of fly ash fineness on compressive strength and pore size of blended cement paste[J].Cement and Concrete Composites,2005,27(4):425-428.
[11]MARTIN L H J,FRANK W,ELSA T,et al.Influence of fly ash on the hydration of calcium sulfoaluminate cement[J].Cement and Concrete Research,2017,95(5):152-163.
[12]CHOI S J,LEE S S,MONTEIRO P J M.Effect of fly ash fineness on temperature rise,setting,and strength development of mortar[J].Journal of Materials in Civil Engineering,2012,24(5):499-505.
[13]杜 涛,李永良,李国祥,等.粉煤灰微珠替代水泥熟料的试验研究[J].水泥,2017(8):10-13.
DU Tao,LI Yong-liang,LI Guo-xiang,et al.Study on micro ball of fly ash to replace cement clinker[J].Cement,2017(8):10-13.
[14]李丹萍.高温对粉煤灰混凝土与钢筋粘结性能的影响研究[D].徐州:中国矿业大学,2015.
LI Dan-ping.Study on bond property of fly ash concrete and steel bar after high temperature[D].Xuzhou:China University of Mining and Technology,2015.
[15]AYDIN S,KARATAY C,BARADAN B.The effect of grinding process on mechanical properties and alkali-silica reaction resistance of fly ash incorporated cement mortars[J].Powder Technology,2010,197(1/2):68-72.
[16]PATRICIA M D K,BART C,RUBEN S,et al.Effect of ultra-fine fly ash on concrete performance and durability[J].Construction and Building Materials,2020,263(12):120493.
[17]KWAN A,CHEN J J.Adding fly ash microsphere to improve packing density,flowability and strength of cement paste[J].Powder Technology,2013,234(1):19-25.
[18]HANIF A,LU Z Y,LI Z J.Utilization of fly ash cenosphere as lightweight filler in cement-based composites-A Review[J].Construction and Building Materials,2017,144(7):373-384.
[19]WANG Q,WANG D Q,CHEN H H.The role of fly ash microsphere in the microstructure and macroscopic properties of high-strength concrete[J].Cement & Concrete Composites,2017:125-137.
[20]ELZBIETA H,ALEKSANDRA K.Effect of particle size of fly ash microspheres(FAMs)on the selected properties of concrete[J].Minerals,2022,12(7):847.
[21]MALHOTRA V M,ZHANG M H,READ P H,et al.Long-term mechanical properties and durability characteristics of high-strength/high-performance concrete incorporating supplementary cementing materials under outdoor exposure conditions[J].ACI Structural Journal,2000,97(5):518-525.
[22]DUAN P,SHUI Z H,CHEN W,et al.Effects of metakaolin,silica fume and slag on pore structure,interfacial transition zone and compressive strength of concrete[J].Construction and Building Materials,2013,44:1-6.
[23]方智全.纳米二氧化硅和粉煤灰微珠对水泥基材料性能的影响研究[D].广州:广东工业大学,2021.
FANG Zhi-quan.Study on the effect of nano silica and fly ash microsphere on the performance of cement-based materials[D].Guangzhou:Guangdong University of Technology,2021.
[24]KUMAR R,BHATTACHARJEE B.Porosity,pore size distribution and in situ strength of concrete[J].Cement and Concrete Research,2003,33(1):155-164.
[25]王 冲,杨长辉,钱觉时,等.粉煤灰与矿渣的早期火山灰反应放热行为及其机理[J].硅酸盐学报,2012,40(7):1050-1058.
WANG Chong,YANG Chang-hui,QIAN Jue-shi,et al.Behavior and mechanism of pozzolanic reaction heat of fly ash and ground granulated blastfurnace slag at early age[J].Journal of the Chinese Ceramic Society,2012,40(7):1050-1058.
[26]米贵东.多组分复合胶凝材料体系水化性能研究[D].北京:清华大学,2016.
MI Gui-dong.Studies on the hydration performance of complex cementitious materials[D].Beijing:Tsinghua University,2016.

相似文献/References:

[1]武建民,祝伟,马士让,等.应用加权密切值法评价基质沥青抗老化性能[J].长安大学学报(自然科学版),2012,32(01):0.
[2]张宜洛,袁中山.SMA混合料结构参数的影响因素[J].长安大学学报(自然科学版),2012,32(01):0.
[3]陈璟,袁万杰,郝培文,等.微观指标对沥青热稳定性能的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[4]周兴业,刘小滔,王旭东,等.基于轴载谱的沥青路面累计当量轴次换算[J].长安大学学报(自然科学版),2012,32(01):0.
[5]李祖仲,王伯禹,陈拴发,等.轴载对复合式路面应力吸收层荷载应力的影响[J].长安大学学报(自然科学版),2012,32(01):0.
[6]关博文,刘开平,陈拴发,等.水镁石纤维路面混凝土路用性能[J].长安大学学报(自然科学版),2012,32(01):0.
[7]翁效林,王玮,张留俊,等.拓宽路基荷载下管桩复合地基沉降变形模式[J].长安大学学报(自然科学版),2012,32(01):0.
[8]穆柯,王选仓,柳志军,等.基于非饱和渗流原理的路基含水率预估[J].长安大学学报(自然科学版),2012,32(01):0.
[9]李振霞,陈渊召.不同类型半刚性基层材料性能的试验与分析[J].长安大学学报(自然科学版),2012,32(01):0.
[10]马 骉,马 晋,周宇鹏.沥青混合料降温收缩断裂特性[J].长安大学学报(自然科学版),2012,32(03):1.
 MA Biao,MA Jin,ZHOU Yu-peng.Cooling shrinkage fracture characteristic of asphalt mixture[J].Journal of Chang’an University (Natural Science Edition),2012,32(4):1.

备注/Memo

备注/Memo:
收稿日期:2023-12-30
基金项目:国家自然科学基金项目(52278429); 陕西省重点研发计划项目(2023-ZDLGY-25,2023-YBGY-495);
陕西省交通科技项目(21-50K,23-91K); 中央高校基本科研业务费专项资金项目(300102312402)
作者简介:何 锐(1984-),男,湖北襄阳人,教授,博士研究生导师,E-mail:heruia@163.com。
更新日期/Last Update: 2024-07-10